

VARIO*luxx* USER MANUAL

Manufacturer:

MRU · Messgeräte für Rauchgase und Umweltschutz GmbH

Fuchshalde 8 + 12 74172 Neckarsulm-Obereisesheim Fon 07132 99620 · Fax 07132 996220 info@mru.de · www.mru.eu

Legal notices / Intellectual property rights comments

Original user manual

© 2022 by MRU

No part of this manual my be published in any form (print, photocopy, electronic media or any other publication form) without a written approval by the publisher.

All user trade marks and name mark descriptions, even those which are not marked as such, are properties of the respective owners.

Edition: 2022-09-21, V11.40.EN

Note on electrochemical sensors

Electrochemical sensors are by their operating principle not only sensitive to the gas they are intended for, but for other gases as well.

This cross sensitivity is compensated by MRU for the typical application of flue gas analysis.

However, unusual high concentration levels of single gas components might lead to

- a reduced measurement accuracy of other gas components
- and to a temporary change of the sensitivity of sensors, which may require several hours recovery time.

Especially concentration levels as high as several % for single gas components may affect the measurement of other gas components at ppm level. Those applications need to be discussed with MRU in detail.

Table of content

1	Inf	ormation for product and safety	8			
	1.1.	Safety manual	8			
	1.2.	Safety precautions				
_			•			
2		roduction				
	2.1.	Intended use				
	2.2.	About us	10			
3	De	scription	12			
	3.1.	Task	12			
	3.2.	Gas flow diagram	12			
	3.3.	The Analyser	13			
	3.4.	Connectors	14			
	3.5.	Probes	15			
	3.6.	Heated Gas sampling probe	16			
	3.7.	Unheated Gas sampling probe	18			
	3.8.	Gas conditioning				
	3.9.	Gas supply	19			
	3.10.	Gas sensors	19			
4	0	eration	20			
4	Ο μ 4.1.	Commissioning				
	4.1.	Operating panel				
	4.2. 4.3.	Charging the battery				
	4.3. 4.4.	Switching on the analyser				
	4.5.	Switching off the analyser				
	4.5.	Turn Display				
	4.7.	Set the analyser to standby mode				
	4.8.	Back to homescreen / Back to measure				
	4.9.	Create screenshots				
	ч.у.		27			
5	Set	ttings				
	5.1.	Open menu Settings				
	5.2.	General settings				
	5.3.	Setting Date and Time				
	5.4.	Device settings				
	5.5.	Water monitoring				
	5.6.	Averaging				
	5.7.	Interval measurement				
	5.8.	Programs				
	5.9.	Analog output setup (4-20mA)	39			
	Set	ting channel	39			
		ting lower / higher limit				
		ting Analog outputs during zeroing				
	Pin assignment of the 4-20 mA interface (Analog IN/OUT)					

5.10. Analog input setup (4-20mA)	42
5.11. Connecting analyser with WIFI (WLAN)	43
5.12. Getting information about the network	
5.13. Assigning a static IP address	46
5.14. Serial connectivity (RS485/USB)	47
5.15. Default settings	49
5.16. Configuration of measurement program	50
Test program	
Measurement program	
Further measuring programs	
Moving a value field	
Assign a measured value	
Setting zoom	51
6 Measurement	
6.1. Preparing measurement	52
Setting up the measuring point	
Operating temperature	
Power supply	
Opening the transport bag	
Plug in Temperature sensor	
Switch-on, warm-up phase, zero point	
Repeated Zero point	
Automatic zero point	
Use last valid zero point	
Select Source zero point (gas)	
Charging state of the battery	
Connections to the analyser	
Attach clip-on filter	
Controlling Filters	
6.2. Take a measurement	61
Setting O2 reference and Fuel type	61
Setting CO purge limit	
Starting the measurement	
Storing measured values	
Select channels for graphic display	
Starting Auto-measurement	
Stopping Auto-measurement	
7 Data memory	
7.1. Organizing data memory	
7.2. Managing sites	69
Adding a new site	
Changing site data	70

Deleting sites7	1
Recalling stored measurements7	1
Delete stored measurements7	2
7.3. Data transfer via USB (CSV export)74	
8 Extras	7
8.1. Open menu Extras77	
8.2. History	
8.3. System extensions	
8.4. Connections	
8.5. Automatic device start	
8.6. Instrument leak test	
8.7. Printing measurement results	
Printing current measurement results8	4
Printing stored measurement results8	4
9 Service	6
9.1. Open menu Service86	
9.2. Service values	
9.3. Performing Device selftest	
9.4. Internal log settings88	
Copying all log data8	8
Copying single log data	
Export NDIR – Factors	
10 Info	2
10.1. Open menu Info	
10.2. Calling up device info	
10.2. Ceaning up device into	
	-
11 Maintenance and cleaning	5
11.1. Cleaning and maintenance	
11.2. Service check95	
12 Simple service work9	6
12.1. Information of the analyser components	
12.2. Updating the firmware97	
Update main firmware9	7
Update firmware of single modules10	0
13 Specifications10	2
13.1. Technical data102	
13.2. Specifications of NDIR technology103	
13.3. Electrochemical Sensor, Sensor for Temperatures and Pressure 103	
13.4. Gas sampling and conditioning106	

13.5. Gas cooler strat	tegy	
13.6. Calculated valu	es and accessories	
13.7. Analysis and ca	lculations	
13.8. Data communio	cation	
13.9. Fuel type list		
		100
_	vomont	
14.1. Gas now measu	Irement	109
Connect analyser to	o Pitot tube	
Parameter for gas f	low measurement	110
		111
14.2. Operating the a	analyser in the extended temperature r	ange I I I
Precautions for use	in the extended temperature range	112
	j box	
	yser with Nickel-Metal-Hybrid (NiHM)-	-
	Option)	
14.5. Screw adapter of	onto HPI-Probe (Option)	
15 Appendix		116
	regarding the measuring instrument	
-	ırm	
	lp	
Start drying manua	lly	118
15.3. Switching off th	ne analyser in case error	
-	alyser with MRU4win	
_	-	
• •	er with MRU4win via serial interface (RS	
	er with MRU4win via TCP/IP connection	
Creating analyser ir	ו MRU4win	121
15.5 Remote control	l of the analyser via VNC	124
	tions for the heated hose line	
	ed hose line	
Bending radius of h	neated sampling lines	126
15.7. Spare parts		
16 Declaration of c	onformity	128

1 Information for product and safety

1.1. Safety manual

All general information and safety precautions of MRU products are listed in the supplied separate safety manual.

Therefore, this manual must be read and observed before the first use of the instrument.

Instrument-specific safety and warning requirements in this manual are prefixed before dangerous actions.

1.2. Safety precautions

The used categories of safety precautions are here explained once more.

•	
	Identifies an immediate, impending hazard that, if
∠ • `	ignored, will result in severe bodily injuries or death.
	Identifies an immediate, impending hazard that, if
	ignored, may result in severe bodily injuries, material damage or death.
^	
	Identifies a possibly dangerous situation that, if
	ignored, may result in minor injuries.
	ATTENTION
	Identifies a possibly harmful situation that, if ignored,
	may result in damages to the device or its
	surroundings.
	NOTE
i	Identifies user tips and other especially important infor
	mation.

The explanation of safety notices:

A CAUTION HOT – danger of burns and fire hazards from gas

extraction probe.

Physical harm and property damage can be caused.

Cool down the probe tube.

2 Introduction

- This manual enables you to understand and safely operate this MRU Analyser **VARIOIuxx**.
- Please read this manual with great vigilant and get familiar with the product before using it.
- This analyser may only be operated by competent personnel and for its intended use.
- Please pay special attention to all safety directions and warnings to prevent personal injuries and damaging of the product.
- We can't be held responsible for any injuries and/or damages that occur by not following the instructions in this manual.
- Always keep the manual near you when working with the analyser, to be able to read instructions as needed. Please ensure to hand over all documents to when handing the analyser over to others.

2.1. Intended use

The Analyser **VARIOIUXX** is designed for the gas analysis of flue gases, as they are emitted from gas/oil burners, engines, or heating and power appliances.

The analyser is intended to support the user in control and indicative measurements in an efficient, accurate and reliable way.

The analyser is not intended for high oxygen concentrations above 25Vol%.

The analyser is specifically not intended as a safety device or personal protective equipment.

The analyser should not be used as a warning device to warn people against the presence of harmful gases.

The analyser was manufactured according relevant standards and regulations.

The analyser must be used according to instructions for the intended use.

WARNING

Risk from manipulations to the measuring device

Operational safety hazard

 Modifications or changes to the measuring device are not allowed.

Syntax

Please note that this manual makes use of the scientific notation of gases (NO2), while the instrument itself and its screen shots display the gases in upper case letter only, i.e. (NO2).

2.2. About us

The analyser is produced by the MRU GmbH in Neckarsulm, Germany (Founded in 1984), a medium sized company that is specialised in developing, producing and marketing high quality emission monitoring analysers.

MRU GmbH produces a wide range of instruments, from standard analysers up to tailor made industrial analysers.

Building 1: Sales, Service, R&D

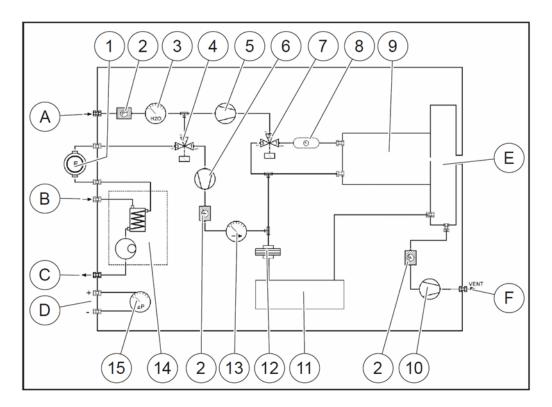
Building 2: Production

MRU GmbH Fuchshalde 8 + 12 74172 Neckarsulm - Obereisesheim GERMANY

Tel +49 71 32 99 62 0 (Front office) Tel +49 71 32 99 62 61 (Service) Fax +49 71 32 99 62 20 Email: <u>info@mru.de</u> Site: <u>www.mru.eu</u>

3 Description

3.1. Task

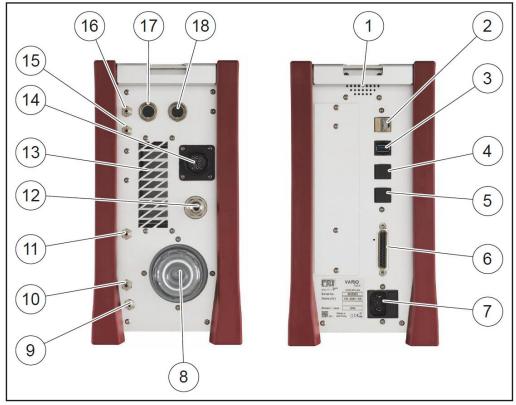

The main task of the analyser is to analyse flue gases, as they are emitting from incinerators or engines.

- The analyser is optimized for this purpose and includes all components from the gas sampling probe to data processing.
- The analyser also performs other measurement tasks such as pressure and temperature measurement or measurement of flow velocity.

For an overview on all available options please refer to the company's home page or sales representatives.

3.2. Gas flow diagram

In combination with the gas sampling probe, the analyser extracts a partial volume of the flue gas from the combustion channel and analyses it for its components by means of sensors (e.g., paramagnetic (oxygen) sensor, electrochemical (oxygen) sensor or NDIR sensors). Draft and temperature are measured at the tip of the sampling probe.



А	Fresh air inlet	В	Sample gas inlet
С	Condensate outlet	D	Diff. Pressure connector
Е	Vent collection box	F	Vent outlet
1	Sample gas filter (PTFE)	2	Dust filter
3	Humidity sensor	4	Auto-zero solenoid valve
5	CO purging pump	6	Sample gas pump
7	CO purge solenoid valve	8	NOX protection filter
9	Box for electrochemical sen-	10	Vent pump
	sors		
11	Infrared (NDIR) bank	12	Acrodisc PTFE filter
13	Sample flow sensor	14	Gas cooler
15	Diff. pressure sensor		

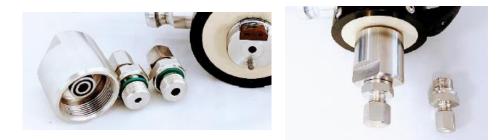
3.3. The Analyser

The analyser consists of a compact and robust metal housing with shock-absorbing rubber corners. All electrical and pneumatic connections are located on the both front sides of the instrument. It is operated exclusively via the touch-sensitive touch screen.

3.4. Connectors

	Front side right			
1	Loudspeaker	2	Ethernet (LAN)	
3	USB socket	4	Second USB socket (option)	
5	RS485 (Option)	6	Analog outputs 4 20 mA Analog-inputs 4 20 mA	
7	Mains power supply			

	Front side left		
8	Sample gas filter	9	Condensate outlet port
			Hose connection DN 4/6
10	Sample gas outlet port (VENT) Hose connection DN	11	Fresh air inlet port
	4/6		
12	Sample gas inlet port	13	Outlet fan of gas cooler
14	Probe connection, electrical	15	Pressure-/diff. pressure
16	Pressure-/diff. pressure (Absolute pressure)	17	Combustion air temperature
18	AUX socket		

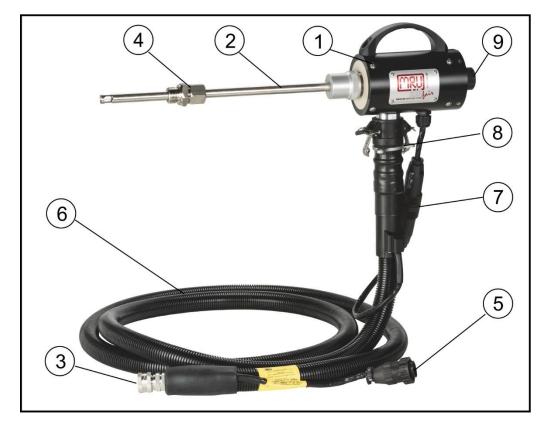

3.5. Probes

In combination with the analyser, probes in different versions for high and less dust content are offered.

- for fuel temperatures up to 800 °C (Stainless-steel probe tube),
- for fuel temperatures up to 1.100 °C (Inconel steel probe tube),
- for fuel temperatures up to 1.700 °C (Viton, Teflon)
- with and without heated pre-filter
- with and without heated gas sampling line
- probe tubes in different lengths

A complete list of available probes can be found in the current price list of this analyser.

Probe adapter set HPI for existing probe tubes (see chapter 14.5) for connecting ON-SITE existing 6- or 8-mm tubes to the probe handle INSTEAD of the enclosed MRU probe tube.
 But then no measurement of the flue gas temperature is possible with this probe tube



3.6. Heated Gas sampling probe

For interchangeable probe tube with flue gas temperature measurement using type K-thermoelement.

1	Probe handle	2	Probe tube
3	Fast locking coupling	4	Probe cone
5	Cable plug (14-pin)	6	Heated hose line
7	Cable coupler (5-pin)	8	Fast locking coupling
9	Filter lock		

• Check the probe filter before and after every measurement.

WARNING

Danger of burns and fire hazards from Heated hose line

Injuries and burns may result.

 Roll out the heated hose line completely for each measurement.

ATTENTION

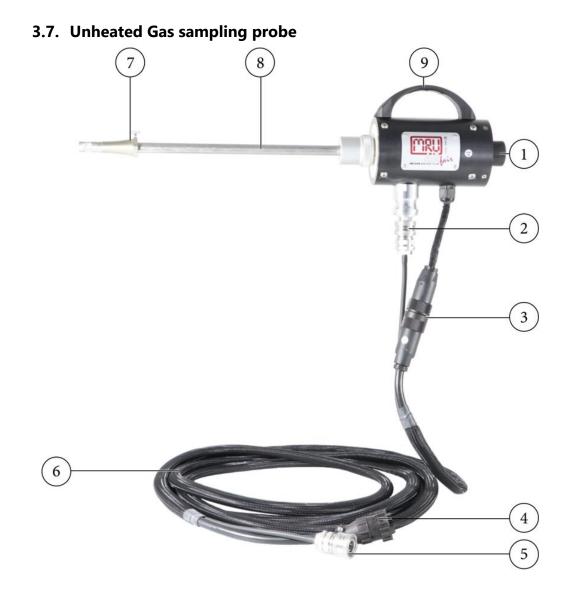
When measuring with coiled heated hose line, the hose line is destroyed due to strong heat development.

Roll out the heated hose line completely for each measurement.

NOTE

Please note that heating hoses with 110V and 230V are offered.

- Check the voltage supply of the heating hose before commissioning.
- You can operate a 230V heating hose with 110 volts, but with limited heat capacity.



A DANGER

Risk due to improper use

Risk of death due to electric shock

- ► Do not operate a 110V heating hose with 230V.
- See also chapter 15.6 General Instructions for the heated hose line, Page 125.

1	Filter lock	2	Fast locking coupling
3	Cable coupler (5-pin)	4	Cable plug (14-pin)
5	Fast locking coupling	6	Unheated hose line
7	Probe cone	8	Probe tube
9	Probe handle		

► Check the probe filter before and after every measurement.

3.8. Gas conditioning

The sucked sample gas is dried and filtered before it is fed to the sensors.

A sample gas cooler with Peltier element is used for drying.

The condensate liquid appearing in the gas cooler is pumped to the condensate outlet by means of a peristaltic pump. The condensate forms drops at the outlet of the instrument.

Optionally, connect a hose (DN 4/6) to the condensate drain.

A hose (DN 4/6, not longer than 5 m) can also be connected to the sample gas outlet for discharge.

For subsequent filtering, a round filter is used on the front of the analyser.

3.9. Gas supply

The analyser contains a gas feed pump (diaphragm pump).

The flow through the gas feed pump is measured and regulated to the nominal value by the analyser.

If the pump capacity is not sufficient to reach the flow of the nominal value, an alarm is issued.

If the flow does not reach the nominal value despite an increase of the pump capacity, the pump is switched off after a while to protect the analyser.

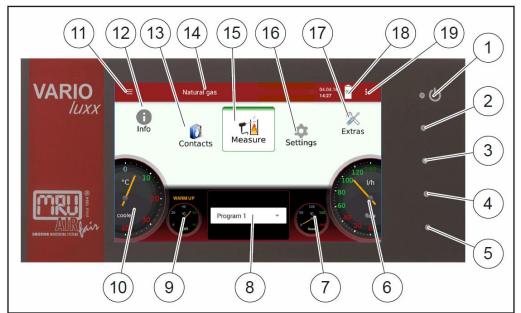
3.10.Gas sensors

The analyser has three types of gas sensors:

1. The analyser works with electrochemical sensors to measure O₂ (oxygen), CO (carbon monoxide), NO (nitrogen monoxide), NO₂ (nitrogen dioxide), SO₂ (sulphur dioxide), H₂S (hydrogen sulphide).

2. The analyser works with a paramagnetic sensor for the Measurement of O₂ (oxygen).

3. The analyser works with a non-dispersive infrared absorption measurement.


Depending on the installed NDIR module, this measuring principle makes it possible to measure CO (carbon monoxide), CO₂ (carbon dioxide), CH₄ (methane) and C₃H₈ (propane).

4 Operation

4.1. Commissioning

The analyser leaves the factory assembled and ready for use.

- Check the analyser regarding completeness and integrity.
- Connect the analyser to the mains.
 - \Rightarrow The analyser switches on.
 - \Rightarrow The operating system boots.
 - ⇒ Blue LEDs for ON and power supply are switched on.
 (In the event of an error, the Power LED lights red)
 - ⇒ The device runs through a start routine of 30 minutes.
 The start routine includes:
 - self-test
 - warm-up of the NDIR bench
 - cool down of the stage gas cooler, indicated by the symbol
 - Zeroing, indicated by symbol. The remaining time until the end of zeroing is displayed.

4.2. Operating panel

All functions are controlled via the touch surface of the instrument. Different gestures are available in the individual menus and windows.

1	Power-on and reset
2	Reserve
3	Reserve
4	LED display mains operation/battery charging mode
5	Reserve
6	Current flow rate
7	Current temperatures heated hose
8	Selected measuring program, e.g., Test or measurement program
9	Current temperatures of NDIR bench
10	Current temperatures of gas cooler
11	Access to detailed information on the instrument components.
	Especially for service or inquiry
12	Menu info
13	Menu contacts
14	Status bar: display of zero point, alarms, executed measuring pro-
	gram, selected fuel, heat-up-, cool-down phase
15	Menu measure
16	Menu settings
17	Menu extras
18	Battery Charge indicator
19	Context menu with window-dependent additional functions

NOTE

For display reasons, the Service menu is missing from the description of the operating panel.

4.3. Charging the battery

The analyser has an integrated rechargeable battery.

- ► Connect the mains plug.
 - \Rightarrow The battery will be charged as soon as it is connected to the mains.
 - \Rightarrow The blue LED (4) lights up.
- Charge battery for more than 8h is recommended after first start to allow the battery to charge completely.

NOTE

Note that the analyser can only be used in battery

operation to a limited extent.

- ▶ Do not carry out any measurements in battery mode.
- Carry out only data processing and setting work in battery operation.

4.4. Switching on the analyser

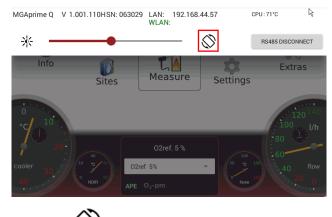
- ▶ Touch the ७ button (1) for 3 sec. minimum
 - ⇒ LED lights blue
- ▶ Release the ७ button (1).
 - ⇒ Analyser runs up.

4.5. Switching off the analyser

There are two possibilities to switch off the analyser.

- ► Touch the Context menu (19) on the display.
 - \Rightarrow A selection list appears.
- ► Touch "Turn unit off".

⇒ A message appears.


- ► Touch "YES".
 - \Rightarrow The analyser shuts down.

Alternatively, you can switch off the analyser as follows:

- ► Touch the ७ button (1).
 - \Rightarrow A dialog window appears.
- ► Touch "YES".
 - \Rightarrow The analyser shuts down.

4.6. Turn Display

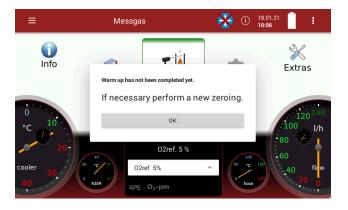
- ► Touch the Context menu (19) on the display.
 - \Rightarrow A selection list appears.
- ► Touch Display settings.
 - \Rightarrow A window appears.

► Touch

⇒ The display turns.

4.7. Set the analyser to standby mode

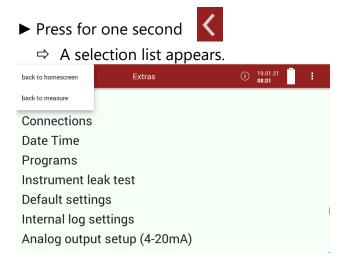
The analyser is protected in standby mode. You cannot take measurements in standby mode.

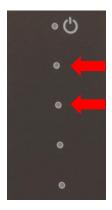

The actuators, for example pumps and gas coolers, are switched off as far as possible. Note that NDIR is not switched off. After you have left the standby mode, the analyser will start up again.

The analyser will display a message that a zeroing may be useful.

- ► Touch the Context menu (19) on the display.
 - \Rightarrow A selection list appears.
- ► Touch Standby.
 - \Rightarrow A message appears.
- ▶ Press Yes to activate standby mode.
 - \Rightarrow The sensors are purged.
 - \Rightarrow The analyser is set to standby mode.

		1
	Standby	
	2	
/		
/		
	MEASUREMENT MODE?	
/		


- ▶ Press MEASUREMNT MODE? to restart the analyser.
 - \Rightarrow A message appears.
- ▶ Press Yes to exit the standby mode.
 - \Rightarrow A message appears.


- ► Press OK.
 - \Rightarrow The analyser is heated up.
- ► If necessary, perform a new zeroing.

4.8. Back to homescreen / Back to measure

As soon as the back button is displayed, you have the option to go back to the homescreen or go back to the measurement, from any window.

Select if you want to go back to the home screen or to measure.

4.9. Create screenshots

You can create screenshots and save them on a USB-Stick.

- ► Insert a USB-Stick into the analyser.
- ► Touch the button 2 and button 3 simultaneously for 3 seconds.
 - See also chapter 4.2 Operating panel, page 20.
 - \Rightarrow A folder "Screenshots is created on the USB-Stick.
 - \Rightarrow The screenshot is saved as PNG in the "Screenshots" folder.

5 Settings

After the analyser has been inspected and is ready for start-up it can be switched on and personalized settings can be entered. These settings can be changed at any time.

5.1. Open menu Settings

► Press Settings

<	Settings	(i)	27.04.21 11: 43	30	:	
General se	ettings					
Device set	tings					
Water mor	nitoring					
Averaging	Averaging					
Programs						
Analog ou	tput setup (4-20mA)					
Analog inp	out setup (4-20mA)					
Wifi						

► Select the desired menu item.

5.2. General settings

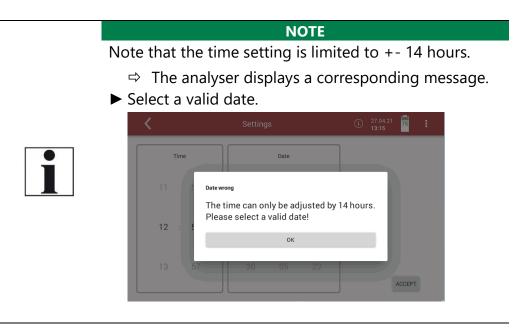
- ► Open the menu Settings.
 - ☞ See also chapter 5.1 Open menu Settings, S. 25.
- ▶ Press General settings.

In the menu General settings, you can make the following adjustments:

Setting	Range	Description
Language		Select analyser language
Country (fuel type)		By changing the country, the O ₂ ref- erence values settings are lost. The fuel list is reset. Similarly, country- specific defaults and methods of measurement are selected as a re- sult. Ensure the correct setting of the country in which you are performing the measurement to ensure that all relevant ones are set up
Temperature unit	°C, °F	Change of unit
Pressure unit		Change of unit
VNC		VNC Viewer for remote control
Set Date Time		 5.3 Setting Date and Time, Page 26.

- ► Select the desired setting.
- ► Change the desired setting
- ► Exit the menu General settings.
 - \Rightarrow The change is automatically saved.

5.3. Setting Date and Time


- ► Open the menu Settings.
 - ☞ See also chapter 5.1 Open menu Settings, S. 25.
- ▶ Press General settings.
 - \Rightarrow A window appears.

<	Settings		(i)	27.04.21 11:56	36	:
Language	Country (fuel type)	2				
English -	Germany 👻	VNC ok				
Temperature unit	Pressure unit					
• O.	hPa/Pa 🔻	SET DATE TIME				
Press SF	T DATE TIME					

- Press SEI DATE TIME
 - \Rightarrow A window appears.

<	Settings	(i) 27.04.21 58 1 12:56 5
Time	Date	
11 54	26 03 20	
12 : 55	27 . 04 . 21	
13 56	28 05 22	ACCEPT

- ► Set the desired time and date.
- ► Press ACCEPT.
 - \Rightarrow The set time and date are shown in the display.

5.4. Device settings

- ► Open the menu Settings.
 - ☞ See also chapter 5.1 Open menu Settings, S. 25.
- ▶ Press Device settings.
 - A window appears.

<	Settings	(i) 20.05.21 13:27
Combustion analysis	Neg	gative gas readings
Analyser start with	Source zero point (gas)	λ as Brettschneider
new zero point 🔹	fresh air inlet 💌	no 👻
Heated hose temperature [°C]	Heated probe temperature [°C]	Ref. temperature
- 160 +	160	+ 0 -
Interval auto-zero [h] Mod	dbus Slave ID Hold delay at	fter purge [s] Aux connector
	- 1 + - 0	+ RS485 ~

Setting	Range	Description
Combustion analysis	ON/OFF	Setting combustion analysis to ON allows for several calculation per- formed by the instrument, which are fuel type
Negative gas readings	ON/OFF	Negative gas readings caused by temperature drift of a sensor are suppressed (shown as zero) or dis- played
Analyser start with		 You can set whether the analyser starts with a new zero point. a stored zero point. See also chapter Use last valid zero point, Page 57.
Source zero point (gas)		Setting from which source zero- point gas is to be sucked in for zero- point measurement. See also chapter Select Source zero point (gas), Page 58. NOTE: After switching on, the first zeroing is always via the fresh air nozzle.
λ accor. Brettschneider		Calculation of the combustion air ra- tio (λ Lambda) according to "Brettschneider
Heated hose temperature	80 – 180°C 176 – 355°F 120 – 180°C	
Heated probe temperature	$120 - 180^{\circ}C$ 250 - 355°F	
Ref. temperature	230 3331	Calculation of the values for a standard state at reference temperature
Interval auto-zero [h]		See chapter Automatic zero point, Page 56.

Modus Slave ID	Modbus address of the instrument
	for the remote control via Modbus
Hold delay after purge	Time in which Analog outputs main-
	tain their value after zero-point
	measurement
Aux connector	Analogue input for TC, 0-10 V,
	420mA, RS485

5.5. Water monitoring

The analyser measures the water concentration of the sample gas in the infrared measuring cell. A measurement of different sample gas components is particularly accurate if the water concentration in the measuring cell is as constant as possible and does not change after the zero point has been taken. Reasons for a change can be a gradual drying out of the gas cooler or subsequent components. The analyser offers with this menu item the possibility to recommend or even start a new zeroing based on the water measurement.

HINWEIS

The accuracies achieved in the proficiency test are realised without this monitoring and derived zero point taking. This monitoring is only intended for higher accuracy requirements and is deactivated in the delivery state.

- You have the possibility to set a permitted deviation between the reference value and the current value.
- You have the possibility to set an allowed duration of the Deviation
- You have the possibility to set the time when the water monitoring should start after the zero point has been taken.
- ► Open the menu Settings.
 - See also chapter 5.1 Open menu Settings, S. 25.
- ▶ Press Water monitoring.
 - \Rightarrow A window appears.
- Activate water monitoring

<	Settings	25:53	í	27.04.21 15:09	98	:
activate v	vater monitoring					

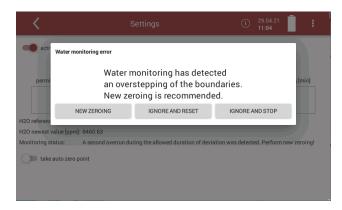
\Rightarrow A window appears.

	K Setting	ļS			<mark>zero</mark> 58:26		30.04.21 11:51		:
		Limits	wate	r moni	toring				
	permitted H2O deviation [ppm]	allowed du	ration of	deviatio	on [min]	start mor	nitoring after z	eroing [min]
	200	20				6	50		
1100	arfeara e fanach								
		7	8	9	$\langle \times$				
		4	5	6	L				
		1	2	3					
			0		↓				

- ► Set the permitted H20 deviation [ppm].
- Confirm the value with
- Set the allowed duration of deviation [min].
- Confirm the value with
- Set the time after the zero point has been taken, when water monitoring is to be started.
- Confirm the value with
- ► Wait until zeroing is completed.
 - \Rightarrow After zeroing, H₂0 reference [ppm] value is displayed.
 - ➡ Monitoring status shows: Monitoring was initialized. Waiting time after zeroing

<	Settings	(i) 29.04.21 09:55
activate water monitoring		
	Limits water monitoring	
permitted H2O deviation [ppm]	allowed duration of deviation [min]	start monitoring after zeroing [min]
1	1	1
H2O reference [ppm]: 8975.03		
H2O newest value [ppm]: 8975.03		
Monitoring status: Monitoring w	as initialized. Waiting time after zeroing	
take auto zero point		

After the set time from start monitoring after zeroing has elapsed, monitoring starts.


Monitoring status shows: Monitoring is running

<	Settings	(i) 29.04.21 09:32
activate water monitoring		
	Limits water monitoring	
permitted H2O deviation [ppm]	allowed duration of deviation [min]	start monitoring after zeroing [min]
1	1	1
H20 reference [ppm]: 8975.03 H20 newest value [ppm]: 8975.03 Monitoring status: Monitoring i take auto zero point	srunning	

- \Rightarrow The analyser continuously displays the newest H₂O value [ppm].
- ⇒ As soon as the permitted H₂0 deviation [ppm] is exceeded, the status changes to: Overrun was detected.

<	Settings	(i) 29.04.21 09:32
activate water monitoring		
	Limits water monitoring	
permitted H2O deviation [ppm]	allowed duration of deviation [min]	start monitoring after zeroing [min]
1	1	1
H2O reference [ppm]: 8975.03		
H2O newest value [ppm]: 8963.11		
Monitoring status: Overrun was	detected	
take auto zero point		

- ⇒ If the allowed duration of deviation [min] is exceeded, the status changes to: A second overrun during the allowed duration of deviation was detected. Perform new zeroing!
- \Rightarrow A message appears.

- ► You have the possibility to perform a new zeroing.
- ► You have the possibility to ignore the message and reset the water monitoring. The water monitoring starts again.
- You have the possibility to ignore the message and stop the water monitoring.

You can also set, that a zero point is taken automatically

Activate take auto zero point.

<	K Settings		
activate water monitoring			
	Limits water monitoring		
permitted H2O deviation [ppm]	allowed duration of deviation [min]	start monitoring after zeroing [min]	
1000	1	1	
H2O reference [ppm]: 8975.03			
H2O newest value [ppm]: 8520.61			
Monitoring status: Overrun was o	letected		
take auto zero point			

⇒ After a second overrun was detected, zeroing starts automatically.

5.6. Averaging

You can set that a permanent averaging is performed.

- ► Open the menu Settings.
 - See also chapter 5.1 Open menu Settings, S. 25.
- Press Averaging.
 - \Rightarrow A window appears.

<		Settings	í	29.04.21 12:37		1
activate averag	ing					
Settings for Prog Number of read						
Time interval	Unit	Reset average when start logg	ing			
59						
10	s	SET				
11						
					1	RESET

- ▶ Set the desired Time unit. You can choose between
- minutes and seconds.
- Set the desired Time interval
- Press SET
 - \Rightarrow The averaging starts.
 - ⇒ The number of read values is counted up according to the set time interval.
 - ⇒ As soon as the set time interval is reached, the number of read values remains constant.

<		Settings	í	29.04.21 15:00	Û.	:
activate averag	ing					
Settings for Prog Number of read						
Time interval	Unit	Reset average when start loggin	ng			
14						
15	s	SET				
16						RESET

You can set that at the start of an Auto-measurement (logging) the average values are reset.

► Activate Reset average when start logging.

NOTE Note that average values are only exported for single measurements (from a certain point in time) in a CSV export. Average values can be displayed in an Automeasurement to check a measurement for plausibility.

If averaging is activated, the average values are displayed in the measurement window.

NOTE

Please note that average values are displayed immediately in the measurement window, even if the set time interval has not yet been reached. The average value is then calculated from the values read so far. As soon as the set time interval has been reached, the average value is constantly recalculated by replacing the last value read with the currently read value.

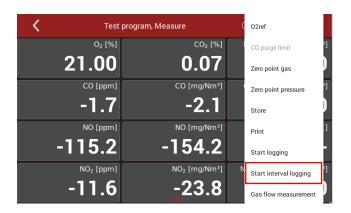
5.7. Interval measurement

You have the possibility to perform an Interval measurement. You can set the duration of the Measurement time, the duration of the Standby time and the amount of the Measurement cycles. The analyser will go into standby mode between intervals.

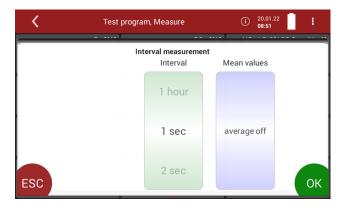
▶ Open the menu Settings.

- See also chapter 5.1 Open menu Settings, S. 25.
- Press Interval measurements
 - \Rightarrow A window appears.

<	Settings	(i) 03.02.22 11:22			
Stanby time	2 h 0 m	SET TIME			
Measurement time	1 h 0 m	SET TIME			
Measurement cycles	5	SET AMOUNT			
Monitor hose temperature during	warm-up				
Monitor probe temperature during warm-up					
Expected time: ≈ 15 h 0 m					

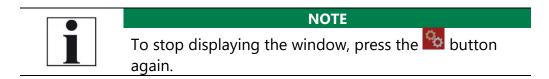

- Press SET TIME / SET AMOUNT to set the duration of the Standby time, the duration of the Measurement time and the amount of Measurement cycles.
 - \Rightarrow A separate input window appears for each setting.

<	Settings		í	03.02. 11:23	22	:
Stanby time	1 h 0 m	SET TIME			Count	
Measurement time	15 m	SET TIME				
Measurement cycles	5	SET AMOUNT		9	9	1
Monitor hose temperature during warm-up						
Monitor probe temperature during warm-up			0	0	2	
				1	1	3
	Expected tim	e: ≈ 7 h 15 m				


- Set the duration of the Standby time, the duration of the Measurement time and the amount of Measurement cycles.
- Press TAKE TIME OVER / SET AMOUNT.
 - \Rightarrow The set time/amount is taken over.
 - \Rightarrow The expected time is adjusted.

<	Settings		03.02.22 11:23		
Stanby time	1 h 0 m			SET TIME	
Measurement time	15 m			SET TIME	
Measurement cycles	2		SI	T AMOUNT	
Monitor hose temperature during warm-up					
Monitor probe temperature during	warm-up				
	Expected time: ≈ 2 h 0 m				

- Activate / deactivate whether the heated hose temperature should be monitored during heating.
- Activate / deactivate whether the probe temperature should be monitored during heating.
- ► Go to the menu Measure.
- Press the Context menu
 - \Rightarrow A selection list appears.


- ▶ Press Start interval logging.
 - \Rightarrow A window appears.

- ► Set the desired interval.
- ► Set whether Mean values should be calculated.
- Press OK.
 - \Rightarrow The menu Please select site appears.
 - \Rightarrow The following icon appears in the display ∞

<	Please select site	¢ <mark>o</mark>	(i)	20.01.22 09:03	:
1; Musterma	ann, Max; Anlage 1				
2; ; Test Exp	oort				
3;					
4;					
5;					

- Select the desired site.
 - \Rightarrow The measuring window appears.
- Press 0
 - \Rightarrow A window appears.

⇒ Information on the remaining time of the measurement and the remaining measurement cycles is displayed.

<	Test program,	Measure	• (i) 20.01.22 09:55
	O ₂ [%]	CO [%] Measuremen	NO ©3.0%O2 [mg/Nm³]
	20.89	00:0 Cycles I	eft: 2 U.U
	CO [ppm]	CO (mg/Nn sto	2 CO 3.0%O2 [mg/Nm³]
	-0.2	-0.3	0.0
	NO [ppm]	NO [mg/Nm ³]	0
	-0.3	-0.4	
	NO ₂ [ppm]	NO ₂ [mg/Nm ³]	NO ₂ @3.0%O2 [mg/Nm³]
	-0.2	-0.3	0.0

⇒ After the set measurement time has been completed, a flushing process is initiated.

<	Test pro	gram, Measure 📫 🕻	(i) 20.01.22 10:00
	O ₂ [%]	00 Cycles	hing NO ©3.0%O2 [mg/Nm³] :00 left: 1
	CO [ppm]	CO (mg/Nnm	OP CO @ 3.0%O2 [mg/Nm ³]
	NO [ppm]	NO [mg/Nm³]	a
	NO ₂ [ppm]	NO ₂ [mg/Nm ³]	NO ₂ @3.0%O2 [mg/Nm ³]

- ⇒ After the flushing process, the analyser is put into standby mode.
- \Rightarrow The remaining standby/wait time is displayed.

<	Test program, N	Measure 🍳	(i) 20.01.22 10:01	
	O ₂ [%]	00:		°]
		Cycles	_	
	CO [ppm]	CO (mg/Nn m	CO 3.0%O2 [mg/Nm ³	³]
	NO [ppm]	NO [mg/Nm³]		1
				-
	NO ₂ [ppm]	NO ₂ [mg/Nm ³]	NO ₂ @3.0%O2 [mg/Nm ³	3]
				-

⇒ After the set standby time has elapsed, a warm-up phase is initiated.

K Test progra	m, Measure 🛛 🔀 🍳	(i) 20.01.22 11:37
O ₂ [%]	CO ₂ [%]	mup NO @3.0%O2 [mg/Nm ³]
20.89	Cycles	
CO [ppm]	CO (mg/Nm)	0P CO 03.0%O2 [mg/Nm³]
0.3	0.4	0.0
NO [ppm]	NO [mg/Nm³]	[]
-15.2	-20.4	
NO ₂ [ppm]	NO ₂ [mg/Nm ³]	NO ₂ @3.0%O2 [mg/Nm ³]
-0.9	1.8	0.0

⇒ After the warm-up phase has elapsed, a zeroing is initiated.

K Test program, Me	asure 🇞 🔽 zero 07:55	○ (i) 20.01.22 11:39
O ₂ [%]	Zeroing CO ₂ [%]	NO @3.0%O2 [mg/Nm ³]
20.89	00:08 Cycles left: 1 0 10	0.0
CO [ppm]	STOP CO [n g/Nm³]	CO @3.0%O2 [mg/Nm³]
0.3	0.4	0.0
NO [ppm]	NO [mg/Nm³]	[]
-15.2	-20.4	
NO ₂ [ppm]	NO ₂ [mg/Nm ³]	NO ₂ @3.0%O2 [mg/Nm ³]
-0.9	-1.8	0.0

- ⇒ After taking the zero point, another measurement is started
- ⇒ The process repeats itself according to the set amount of measurement cycles.

5.8. Programs

You can change the Program names.

- ► Open the menu Settings.
 - See also chapter 5.1 Open menu Settings, S. 25.
- ▶ Press Programs.

<	Settings	Ó	07.05.21 14:57	99	1
	Program names:				
O2ref 5%					
02ref 13%					
Program 3]		
Program 4					

- ► Select the program you want to change the name for.
 - \Rightarrow A keybar appears.
- Enter the desired Program name.

- ► Exit the menu
- ▶ Press Selected measuring program.
 - See also chapter 4.2 Operating panel, Page 20.
 - The changed program name is shown in the display.

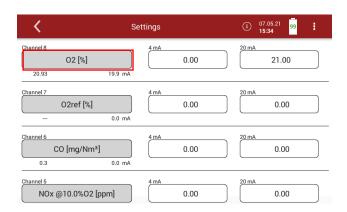
≡	≡ Messgas	
Sites	Settings	Service
Measur	C Test program	Extras
0	O2ref 5%	120140
°C/ 10	O2ref 13%	120 100 I/h
20-	O2ref 10	80
cooler 30 20 10 50	Program 4	50 °C 150 .40 flow
40 NDIR 80	APE O ₂ -pm	hose 2007 0 0

5.9. Analog output setup (4-20mA)

There are 8 Analog outputs (4-20 mA) available. Each Analog output (channel) is assigned a measured variable and an output range.

Setting channel

- ► Open the menu Settings.
 - ☞ See also chapter 5.1 Open menu Settings, S. 25.
- ▶ Press Analog output setup (4-20mA).
 - \Rightarrow A window appears.


<	Settings	(i) 07.05.21 99 15:34
Channel 8 NO [ppm] 1.6 0.0 mA	4 mA 0.00	20 mA 0.00
Channel 7 02ref [%] - 0.0 mA	4 mA 0.00	20 mA 0.00
Channel 6 CO [mg/Nm³] -0.7 0.0 mA	4 mA 0.00	20 mA 0.00
Channel 5 NOx @10.0%O2 [ppm]	4 mA 0.00	20 mA

► Choose the desired channel.

 \Rightarrow A selection list appears.

<		Settir	ngs)7.05.21 99 1 5:34	1
Channel 8	NO [ppm]	Measurand O2ref [%]	4 mA	0.00	20 mA	0.00	
Channel 7		O2 [%] 20.93 Air ratio []		0.00		0.00	
Channel 6 C -0.1	D [mg/Nm ^a]	Exc.Air [%] CO2 [%] 0.06 CO [ppm]				0.00	
Channel 5 NOx	ESC	-0.0 CO @0%O2 [p	opm]	0.00	20 mA	ок	

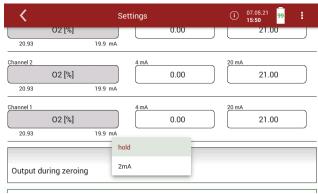
- ► Choose the desired measurrand.
- ► Press "OK".
 - \Rightarrow The measurand is assigned to the desired channel.

Setting lower / higher limit

	NOTE
l	Setting lower limit (4mA) This setting determines the lower end value, corre- sponding to 4 mA. If the measured value falls below the set value, the Analog output stops at 4 mA.
	HINWEIS
i	Setting higher limit (20mA) This setting determines the higher end value, corre- sponding to 20 mA. If the measured value rises above the set value, the value remains at 20 mA.
•	menu Settings. so chapter 5.1 Open menu Settings, S. 25.
Press Ana	log output setup (4-20mA).
	low appears.
	4 mA or 20 mA field to set the limits for a specific channel.
⇒ A winc	low appears.
<	Settings (i) 07.05.21 99
Channel 8 O2 [%]	4 mA 20 mA 21.00
DEFAULT	ОК

- ► Enter the desired values for the lower and higher limit.
- ► Press "OK".
- Press "Default" to set the default values for the lower and upper limits.
 - \Rightarrow The lower and higher limit are assigned to the desired channel.

<	Settings	(i) 07.05.21 15:45
Channel 8 02 [%] 20.93 19.9 m/	4 mA 0.00	20 mA
Channel 7 02ref [%] - 0.0 m/	4 mA 0.00	20 mA
Channel 6 CO [mg/Nm ³] 0.8 0.0 m/	4 mA 0.00	20 mA 0.00
Channel 5 NOx @10.0%O2 [ppm]	4 mA 0.00	20 mA


Setting Analog outputs during zeroing

Zeroing starts automatically. The display shows "zero". The remaining time until the Zero point measurement ends is

The following settings are possible:

- •Hold The outputs kept the last values from before zeroing
- •2 mA The outputs change to 2 mA to indicate the zero point
- ► Open the menu Settings.
 - ☞ See also chapter 5.1 Open menu Settings, S. 25.
- ▶ Press "Analog output setup (4-20mA)".
 - \Rightarrow A window appears.
- ► Scroll to "Output during zeroing"
- Press the field.
- Choose the desired option.

Pin assignment of the 4-20 mA interface (Analog IN/OUT)

- ► Open the menu Settings.
 - See also chapter 5.1 Open menu Settings, S. 25.
- ▶ Press "Analog output setup (4-20mA)".
 - \Rightarrow A window appears.
- Press, Analog output setup (4-20mA)".
 - \Rightarrow A window appears.
- Scroll to graphic representation of the pin assignment of the 4-20 mA interface.

<	Settings	(i) 07.05.21 99 15:57
	ANALOG INVOUT 02 03 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05	
	GND GND	IN_2 IN_1 OUT_8 OUT_6 OUT_6 OUT_6 OUT_6 OUT_4 OUT_4 OUT_2 OUT_1
	PE 4-20mA	OUT_1

 \Rightarrow The setting is saved.

5.10. Analog input setup (4-20mA)

There are 4 Analog inputs (4-20 mA) available. Each Analog input (channel) is assigned a measured variable and an output range.

- ► Open the menu Settings.
 - See also chapter 5.1 Open menu Settings, S. 25.
- Press Analog input setup (4-20mA).

⇒	A window app	ears.		
<	Settings		(i) 08.05.21 07:25	ł
Input Channel 1		0		
4 mA value	20 mA value O	Decimal digit ()	mA -0,0	
Input Channel 2		0		
4 mA value ()	20 mA value ()	Decimal digit ()	mA -0,0	
Input Channel 3		0		
4 mA value 0	20 mA value O	Decimal digit ()	mA -0,0	
Input Channel 4		0		
4 mA value	20 mA value	Decimal digit	mA	
	ممتعمام مطع ممم	م م م م م م م	I	

- Choose the desired channel.
 - \Rightarrow A window appears.
- ► Enter the desired values.

<		Settings			(i)	08.05.21 07:52	1
		Ed	it				
Measurand:	Temp						
Unit: °C			°C	•			
4mA value:	500						
20mA value:	2000						
Decimal digit:	0						

► Go back.

- \Rightarrow The values appear in the selection list.
- \Rightarrow The incoming measurand is displayed.

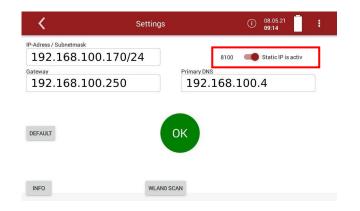
<	Settings	5	(i) 08.05.21 07:54	
Input Channel 1 Temp		406 °C		
4 mA value 500	20 mA value 2.000	Decimal digit ()	mA -0,0	
Input Channel 2		0		-
4 mA value O	20 mA value O	Decimal digit	mA -0,0	
Input Channel 3		0		_
4 mA value 0	20 mA value O	Decimal digit	mA -0,0	
Input Channel 4		0		_
4 mA value	20 mA value	Decimal digit	mA	

5.11. Connecting analyser with WIFI (WLAN)

- ► Insert a WLAN-Stick into the Analyser.
- ► Open the menu Settings.
 - ☞ See also chapter 5.1 Open menu Settings, S. 25.
- ► Press WIFI.
 - @ A window appears.
- Switch on the WLAN.
 - ⇒ The available WLAN connections are displayed.

NOTE

Press the button REFRESH, if no WLAN connection is displayed


<	Settings	=	(i)	08.05.21 08:04		1
Wifi					REFRE	ѕн
"MRU-EI	ntwicklung"				-	23%
"MRUGU	JEST"				÷	33%
"MRUWI	_AN"					22%
"MRU-EI	ntwicklung"				Ŷ	52%
"MRUGU	JEST"				÷	49%
"MRUWI	_AN''				Ţ	194

- ► Select the desired WLAN-Connection.
 - \Rightarrow A window appears.

<		Settings		08.05.21 08:29
WLAN	RU-Entwicklu	ing"		
Passwo	rd			
			i i i i i i i i i i i i i i i i i i i	
	1 2 3	4 5 6	7 8 9	0 🗵
	@ # %	& * -	+ ()
1	L/2 ! "	< > ' :	; /	? 1/2
	АВС		•	:-)

Enter the WLAN password.

▶ Press "OK".

- \Rightarrow A connection to the WLAN network is established.
- \Rightarrow A WLAN symbol appears in the display.
- ► Touch the WLAN icon to see the WLAN IP.

► Alternatively, press the context menu button to display the WLAN IP.

	V 1.000.135B SN: 063182 LAN: 192.168.100.47 WLAN: 192.168.43.53	CPU : 53°C
☀	—	RS485 DISCONNECT

- ► Use the displayed WLAN -IP for MRU4win (in this example 192.168.43.53).
 - See also Chapter 15.4 Connecting analyser with MRU4win, Page 111.

5.12. Getting information about the network

- ► Open the menu Settings.
 - ☞ See also chapter 5.1 Open menu Settings, S. 25.

► Press Network.

<	Settings	(i) 08.05.21 09:05
IP-Adress / Subnetmask		
192.168.100.3	170/24	8100 DHCP is activ
Gateway	Prima	ary DNS
192.168.100.2	250 19	92.168.100.4
DEFAULT	ок	

A window appears.

<	Settings (i 08.05.21
eth0	Link encap:Ethernet Hardware Adresse b8:27:eb:1a:43:c9
	inet Adresse:192.168.45.222 Bcast:192.168.45.255 Maske:255.255.254.0
	inet6-Adresse: fe80::3f8a:b5a8:128b:721/64 Gültigkeitsbereich:Verbindung
	UP BROADCAST RUNNING MULTICAST MTU:1500 Metrik:1
	RX packets:924 errors:0 dropped:80 overruns:0 frame:0
	TX packets:276 errors:0 dropped:0 overruns:0 carrier:0
	Kollisionen:0 Sendewarteschlangenlänge:1000
_	RX bytes:140915 (137.6 KiB) TX bytes:31078 (30.3 KiB)
lo	Link encap:Lokale Schleife
	inet Adresse:127.0.0.1 Maske:255.0.0.0

⇒ Information about the network appear.

5.13. Assigning a static IP address

You have the possibility to assign a static IP address via Ethernet and WLAN.

- ► Open the menu Settings.
 - See also chapter 5.1 Open menu Settings, S. 25.
- ► Press Network
 - ⇒ A window appears

<	Settings		21.09.22 08:56			
IP-Adress / Subnetmask 192.168.1 Gateway 192.168.1		rimary DNS 192.168.100.4	DHCP			
INFO	WLAND SCA	Interface Etherne	et v			
			N	IOTE		
i	dress/s bled. If	witch is set ubnet mask the switch i 9 address.	k/gatewa	y and P	rimary DN	NS are disa

- ► Set the switch to "Static IP".
 - ⇒ The fields for "IP-Adress/Subnetmask", "Gateway" and "Primary DNS" become enabled.
 - \Rightarrow You can assign a static IP address.

K Setti	igs () 21.09.22 99:15	
IP-Adress / Subnetmask 192.168.100.170/24	8100 Static IP	
Gateway 192.168.100.250	Primary DNS 192.168.100.4	
	ОК	
	Ethernet	
INFO WLANO SCA	Interface WLAN	

- ► Press "OK".
 - \Rightarrow A window appears.
- ► Choose the desired option.
 - ⇒ The change takes effect after a restart

5.14. Serial connectivity (RS485/USB)

You have the option of transferring data wirelessly with MRU4Win to a PC/notebook.

Use the USB Bluetooth converter set (# art. no. 12992).

The USB-Bluetooth converter set consists of two pre-paired and configured converters.

The distance can be up to 300m depending on local conditions.

NOTE

Ensure that the analyser is switched off before plugging the USB Bluetooth converters into the USB port.

- ▶ Plug a USB Bluetooth converter into the USB port of the analyser.
- Switch on the analyser.
- ▶ Plug the second USB Bluetooth converter into the switched-on PC.
 - ⇒ The middle LED (Connect) should flash on both converters. The two converters are connected.
- ▶ Open the menu Settings in the analyser.
 - See also chapter 5.1 Open menu Settings, Page 25
- Select Serial connectivity (RS485/USB)
 - \Rightarrow A window appears.

<	Settings	(1)	06.05.21 10:29	ł
	Serial modbus (RTU)			
	Select output for serial connective	vity		
	RS485 output	*		

- Select "use USB-Port (ttyUSB4)
- ► Start MRU4Win.

NOTE Ensure that under "Settings/General" the setting "Activate Modbus" is checked. Settings General Querce Activate Modbus V Look for Bluetooth devices when starting V Display confirmation when stopping measurement

- Select Livemeasurements.
 - ⇒ The menu Livemeasurements appears.

✓ Show start animation

Scan	+ Create Modbus Device
\$	
Table	

- ► Click Create Modbus Device.
 - ⇒ The window Modbus Settings appears.
- ► Enter the following parameters:
 - Device = 1113 Device
 - Slave ID = Slave ID of the analyser. In this example the Slave ID is 1.
 - Serial / TCP = Serial
 - Comport = The converter creates a new Comport. Please enter this Comport in MRU4Win. In this example the Comport is Com 3. You can find more information in the MS Windows Device Manager.
 - Baud rate = 19200
 - Data Bits = 8
 - Parity = Even
 - StopBits = One

🛱 Modbus Se	ttings –	-		<
Device *	1113 Device			,
Slave ID *	1			
Serial/TCP	Serial			,
Comport *	COM3			,
Baud rate	19200		```	-
Data Bits	8			,
Parity	Even			,
StopBits	One			,
🗌 RTS				
	ОК	(Cancel	

► Click OK

 \Rightarrow The Modbus Device is created.

Click G

 \Rightarrow The connection is established.

5.15. Default settings

You can reset the analyser to factory default.

NOTE Note that when the analyser is reset to factory default all individual settings are lost.

- ► Open the menu Settings.
 - ☞ See also chapter 5.1 Open menu Settings, S. 25.
- ► Press Default settings

→ A window appears.					
<	Settings	(i) 06.05.21 10:35	<u> </u>		
	Attentic	n!			
	Reset to facto	ry default			
	causes the lo	ss of all			
	individual se	ettings!			
	Reset no	w?			
ESC OK					

- ► Press OK.
 - ⇒ The analyser is reset to factory default

5.16. Configuration of measurement program

The Analyser provides in the Measure menu various measurement programs, which can be selected in the main window. Each measuring program defines the properties of the measuring window:

Test program

The measured value window shows predefined values and cannot be changed. Can be used in instrument testing to obtain standardized displays, e.g., can easily be checked with test gases.

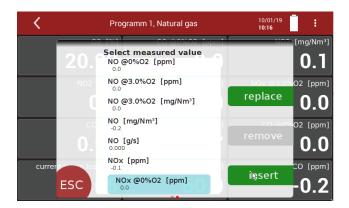
Measurement program

The measured value window can be freely set with regard to the displayed measured values.

Further measuring programs

The measurement window for gas analysis can be configured and adapted to your needs. The measuring window initially displays 12 measured values, by a scrolling gesture it will display more values.

Moving a value field


- ► Touch the menu Measure
 - \Rightarrow The measurement window appears.

K Pro	ogramm 1, Natural gas	10/01/19 09:56
O2 [%]	CO @0%O2 [ppm]	NO2 [mg/Nm³]
20.91	0.0	-0.1
NO2 [ppm]	NOx @0%O2 [ppm]	NOx @3.0%O2 [ppm]
-0.0	0.0	0.0
CO2 [%]	CH4 [mg/Nm ³]	CO @0%O2 [ppm]
0.07	-0.9	0.0
current pump load [%]	Sample flow [l/h]	CO [ppm]
66	59.5	-0.1

- ► Touch and hold the value field.
 - \Rightarrow Value field will be framed.
- Move the value field to a different position.
 - ⇒ The other value fields move automatically.

Assign a measured value

- ► Touch the menu Measure
 - \Rightarrow The measurement window appears.
- ► Double touch the value field.
 - \Rightarrow A selection list appears.
- ► Touch the desired measurand.

- ⇒ You can replace the selected value field with the selected measured value.
- You can insert the selected measured value in place of the selected value field. The previously selected value field moves accordingly.
- ► Touch "replace "or "insert ".

Setting zoom

- ► Touch the menu Measure.
 - \Rightarrow The measurement window appears.
- Swipe left on the Touchscreen.
 - \Rightarrow The measured values are displayed in the zoom display.

<	Progra	amm 1, Natural gas	10/01/19 10:38		
	O2 [%]	CO @0%O2 [ppm]	NO2 [mg/Nm ³]		
	20.90	0.0	-0.0		
	NO2 (ppm)	NOx @0%O2 [ppm]	К Р	rogramm 1, Natural gas	10/01/19 10:39
	-0.0	0.0	C	:H4 [ppm]	O2 [%]
	CO2 [%]	CH4 [mg/Nm ³]			
	0.08	-1.3	_	1.8	20.90
	pump load [%]	Sample flow [l/h]		1.0	20.50
	64	59.8 <mark>.</mark>	Sample	flow [l/h]	Cooler [°C]
			6	0.7	4.0

6 Measurement

6.1. Preparing measurement

Acid from the condensate

Acid burns may result from weakly acidic liquids from the condensate.

- If you come into contact with acid, wash the area immediately using a lot of water.
- ▶ Note the safety data sheet for phosphoric acid (10%).

There is a risk of poisoning.

Risk due to toxic gases

Noxious gases are sucked in by the measuring device and released into the ambient air.

 Only use the measuring device in well ventilated spaces.

Setting up the measuring point

- ▶ Place the analyser on a stable surface.
- ► Unroll the heating hose completely.
- Ensure that the heating hose is not twisted in itself.
- Ensure that all couplings and hose connectors are properly connected.

NOTE

Please note that heating hoses with 110V and 230V are offered.

- Check the voltage supply of the heating hose before commissioning.
- You can operate a 230V heating hose with 110 volts, but with limited heat capacity.

DANGER

Risk due to improper use

Risk of death due to electric shock

▶ Do not operate a 110V heating hose with 230V.

Operating temperature

The internal gas cooler operates at 5°C, which is the dew point of the sample gas to the sensors. Components along the gas line may be damaged if they are colder than 5°C and condensation appears internally. Therefore, if the analyser has been stored very cold (below 0°C), it is essential to wait for the analyser to warm up in a warm environment in order to avoid such condensation! In such cases, take a typical warm-up time for the instrument of one hour into account, especially when wet flue gases are to be measured.

If the operating temperature is not within the permissible range, a corresponding message is displayed.

See also Chapter 13.1 Technical data, Page 102.

Power supply

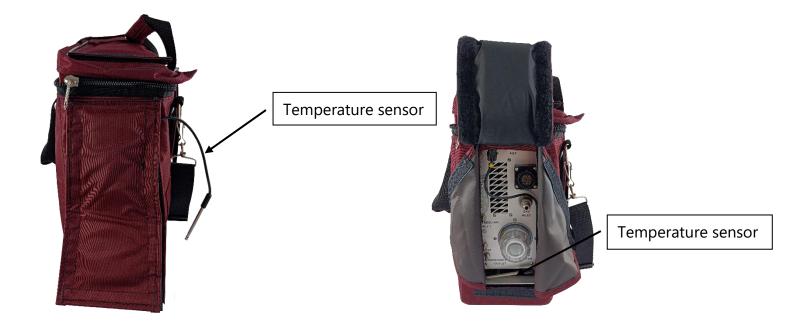
The analyser can be operated with an internal battery to warm up the instrument or to use internal instrument functions. A mains connection is required for the measurement including heated gas sampling probe and heating hose.

Opening the transport bag

NOTE

i

Note that different transport bags are offered. A standard transport bag is offered, which is intended exclusively for the transport and not for the operation of the analyser.


Optionally, an IP42 operating bag is available, which is designed for the operation of the analyser.

- ► Check the type of your transport bag.
- ► If you have a standard transport bag, remove the analyser from the transport bag.
- ▶ If you have an optional IP42 operating bag, proceed as follows:
- ► Open the IP42 operating bag to get access to the control panel (1).
- ► Open the IP42 operating bag to get access to the left side (2).
- ► Open the ventilation flap (3).

Plug in Temperature sensor

- Plug the temperature sensor into the T-AIR connector (17).
 - ☞ See also chapter 3.4 Connectors, Page 14.
- Open the ventilation flap and position the temperature sensor as shown below:

NOTE

The temperature sensor can remain plugged in permanently – even when transporting the analyser.

Switch-on, warm-up phase, zero point

After switching on, the instrument can always be operated, even if no gas analysis can take place during the warm-up phase. The instrument independently performs the following actions during the warm-up phase:

- Heating the probe and the heating hose
- Warm up the NDIR bench
- After the operating temperatures have been reached, the gas pump is switched on and the analyser takes the zero point with fresh air.

ATTENTION

Be sure to connect a condensate drain to the condensate outlet to avoid damage to the analyser or its surroundings.

A corresponding message is displayed when the analyser is switched on.

• After the zeroing, the analyser is ready for operation If the ambient air is contaminated during the last two minutes of zeroing, the zero point is extended by approx. three to ten minutes. If there is no serious zero point after the zero-point extension, a message appears in the display.

In this case, check the ambient air. If the Setting "Analyser start with – stored zero point "is activated the ambient air is not checked

See also Chapter 5.4 Device settings, Page 27.

Repeated Zero point

It is possible to start a manual zero-point measurement.

- ► Touch the menu "Measure ".
- ► Touch the "Context menu "(19).
 - \Rightarrow A selection list appears.

- Press Zero point gas.
- Confirm the zeroing of the gas sensors.
 - ⇒ The Zero-point gas starts.
 - ⇒ The Zero-point gas takes 8 minutes

Automatic zero point

It is possible to set zero-point intervals.

The analyser automatically performs a zero-point measurement within the set interval.

▶ Set the desired interval auto-zero [h] in the menu Device settings.

See also Chapter 5.4 Device settings, Page 27.

<	K Settings		
Combustion analysis) N	egative gas readings	
Analyser start with	Source zero point (gas)	λ as Brettschneider	
new zero point 👻	fresh air inlet 💌	no	·]
Heated hose temperature [°C]	Heated probe temperature [°0	[] Ref. temperati	ure
— <u>160</u> +	160	+ 0	•
Interval auto-zero [h] Mod	bus Slave ID Hold delay	after purge [s] Aux	connector
	- <u>1</u> +) + B	S485 🔻

NOTE

Please note that a manually initiated zeroing sets a new time point grid. This depends on the set interval auto-zero [h] in the menu Settings.

Example:

You have set a zero-point interval [h] of 4 h. The last automatic zeroing took place at 2 pm. The next automatic zeroing would be at 6 pm. At 4 pm you carry out a manually initiated zeroing. The time grid is shifted. The next automatic zeroing takes place at 8 pm.

You can display the time of the next automatic zeroing.

► Touch ①

⇒ A window appear	s.
-------------------	----

K Programm 1, N	atural gas	zero 03:29	• (i) 14.04.20 16:47
O2 [%]		Next ze	roing: 18:45:54 SS [] a]
25.00		Eventlog 16:45:54: start ze 16:46:35: 700 LA	
CO [ppm]		CO [mg/Nm³]	CO @3.0%O2 [mg/Nm ³]
0.0		0	0
NO [ppm]		NO2 [ppm]	NOx [ppr <mark>n</mark>]
0		0	0
SO2 [ppm]		CH4 [%]	Cooler [° <mark>C</mark>]
0		0.000	ок 5.0

If the automatic zeroing is switched off "--- "appears in the display.

Use last valid zero point

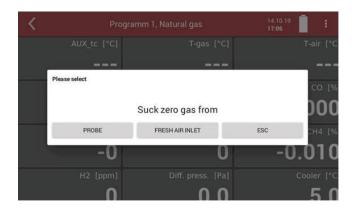
You can set whether the analyser takes a new zero point or continues to work with the latest valid zero point.

- Set in menu Device settings, the Setting "Analyser start with" to "stored zero point".
 - ☞ See also Chapter 5.4 Device settings, Page 27.
 - \Rightarrow No new zero point is taken after switching on.
 - \Rightarrow The zero-point bar is orange in this case.

<	Settings	zero (i 05:08	20.05.21 13:27
Combustion analysis	Ne	gative gas readings	
Analyser start with	Source zero point (gas)	λ as Brettschneid	der
new zero point 👻	fresh air inlet 🔻	no	•
Heated hose temperature [°C]	Heated probe temperature [°C] Ref. tem	perature
- 160 +	160	+ 0	-
Interval auto-zero [h] M	odbus Slave ID Hold delay a	ifter purge [s]	Aux connector
	<u> </u>	+	RS485 -

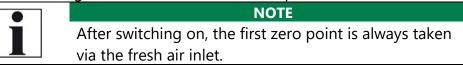
 NOTE
Please note that for the O2 sensor, regardless of this
setting, a zero-point measurement is performed after
 each switch-on.

Select Source zero point (gas)


You can select whether zero-point gas is always sucked in via the fresh air inlet.

You can set whether zero-point gas is sucked in optionally via the fresh air nozzle or the probe.

- ► Open the menu Settings.
 - See also Chapter 5.1Open menu Settings, Page 25
- Press Device settings
 - \Rightarrow A window appears.
- ▶ Press "Source zero point (gas)".


<	Settings	(i) 20.05.21 13:27
Combustion analysis	() N	legative gas readings
Analyser start with	Source zero point (gas)	λ as Brettschneider
new zero point 👻	fresh air inlet 💌	no 👻
leated hose temperature [°C]	Heated probe temperature [*	C] Ref. temperature
<u> </u>	160	+ 0 -
nterval auto-zero [h]	Modbus Slave ID Hold delay	after purge [s] Aux connector
	-1 + - 0	0 + RS485 -

- Choose the desired option.
 - ⇒ If the option "fresh air inlet" is selected, zeroing is carried out via the fresh air inlet.
 - ⇒ If you select the option "selectable", you have to make further settings.
- ▶ Go to the menu "Measurement".
- ► Touch the context menu (19)
 - \Rightarrow A selection list appears.
- ► Touch "Zero point gas".
 - \Rightarrow A window appears.

► Choose the desired option.

 \Rightarrow The zero gas is sucked in either via the probe or the fresh air inlet.

Charging state of the battery

The battery symbol in the display indicates approximately the remaining capacity of the battery.

From 2% remaining capacity, the charging indicator starts to flash red. If the instrument is not connected to the mains power supply within one minute, the analyser switches off to prevent battery discharge. Even when the battery is discharged, the instrument can be operated completely on the power supply.

Connections to the analyser

- See Chapter 3.4 Connectors, Page 14.
- Connect the gas sampling probe to Sample gas inlet port (12) (gas coupling and round plug).
- Note that acidic condensate is discharged from the condensate outlet port (9).

	NOTE	
	 Always connect a collection container to the condensate output (9). Ensure that the collection container has a sufficient construction. 	
	 empty volume. Dispose of acidic condensate and phosphoric acid in accordance with national and, if necessary, local disposal guidelines. 	
Please note that measuring gas may leak at the analyser side or at the		
Sample gas outlet port (10).		

Connect an external pump to the Sample gas outlet port (10), if an electrochemical sensor is installed.

The pump capacity should be approx. 112,5 ln/h, and thus 25% above the typical sample gas flow rate of 90 ln/h.

Connect a hose to the Sample gas outlet port (10), if no electrochemical sensor is installed.

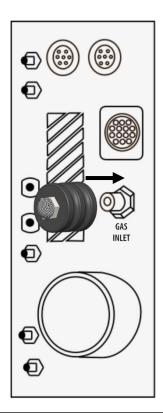
If the "active VENT" option is installed, an internal gas pump feeds the sample gas completely to the Sample gas outlet port (10) and no sample gas enters the enclosure. A discharge gas hose can be connected to the Sample gas outlet port (10).

- Ensure that pollutant-free ambient air can be drawn in at the fresh air inlet (11). If necessary, connect a hose here to bring in such fresh air.
- In the case the option active vent is installed, note that the sample gas at the exit may be diluted with ambient air and is therefore not adequate to be reused in the process

The flow rate of the gas should be within 90 ln/h.

Otherwise, please check probe and filter for clogging.

Check also whether there is a device alarm.


Temperatures of NDIR and heating hose should be within the specified range in order to guarantee a sufficient measuring accuracy.

☞ See Chapter 13 Specifications, S. 102.

Attach clip-on filter

If you operate the analyser without a heated hose, dirt may collect in the gas inlet.

▶ In this case, plug the supplied clip-on filter onto the gas inlet (12).

Controlling Filters

The filters (probe filter and round filter) must be checked before and after each measurement.

6.2. Take a measurement

Setting O2 reference and Fuel type

- ► Touch the menu "Measure ".
 - \Rightarrow The measurement window appears.
- ► Touch the "Context menu "(19).
 - \Rightarrow A selection list appears.
- ► Touch "O2ref / Fuel type).
 - \Rightarrow A window appears.

<	Program 1, Nat gas light	() 09.02.21 85 E
	Sample gas	O2 reference [%]
	Natural gas	- 3,0 +
	Nat gas light	CO2max: 12.2 %
	Oil heavy	A2: 0.66
	Oil light	B: 0.009
	Propane	Fw: 57
	Butane	kWh-factor. 0.873
		BW-factor. 1.11
ESC	Wood @ 0%	ОК
200	Weed @ 10%	UK

- ► Adapt the O2 reference to your sample gas.
- ► Touch "OK".
 - \Rightarrow The setting is saved.

Setting CO purge limit

Electrochemical sensors operate within a specified range and may be damaged due to overload. In the application of flue gas, the CO value may cover a broad range. Therefore, the instrument provides for a protection of the CO sensor including a switch-off valve and purge pump.

During this protection is active, the CO measurement is only supported by a high-range CO sensor or the NDIR bench optionally.

- ► Touch the menu "Measure ".
 - \Rightarrow The measurement window appears.
- ► Touch the context menu (19).
 - \Rightarrow A selection list appears.
- ► Touch "CO purge limit".

🖁 🖌 🛛 Mea	asurement, Natural gas	O2ref / Fuel type
02 [%]	CO [ppm]	CO purge limit
20.15	1.0	Zero gas sensors
NO ref3%O2 [mg/Nm ³]	Losses [%]	Zero pressure
0	100.0	Store
CO2 [%]	Air ratio []	Start Logging
0.46		
CO [mg/kWh]	Eff. ncv [%]	CO ref0%O2 [ppm]
0		0

- ⇒ A window appears
- Set the desired CO threshold value.
- ► Touch "OK".
 - \Rightarrow The setting is saved.

The stored ppm value determines the CO shutdown threshold. If the measured value reaches this threshold, the second fresh air purge pump starts and the CO sensor is separated from the gas path by a valve. If the value falls below 20 % of the threshold value during flushing, the CO sensor is again supplied with sample gas.

Starting the measurement

- ► Touch the menu Measure.
 - \Rightarrow The measurement window appears.
 - ⇒ The measurement starts with the set parameters.

K Pr	ogramm 1, Natural gas	10/02/19 08:47
O2 [%]	CO @0%O2 [ppm]	NO2 [mg/Nm³]
20.93	0.0	0.5
NO2 [ppm]	NOx @0%O2 [ppm]	NOx @3.0%O2 [ppm]
0.2	0.0	0.0
CO2 [%]	CH4 [mg/Nm ³]	CO @0%O2 [ppm]
0.07	0.5	0.0
current pump load [%]	Sample flow [l/h]	CO [ppm]
66	for the same same same same same same same sam	-0.1

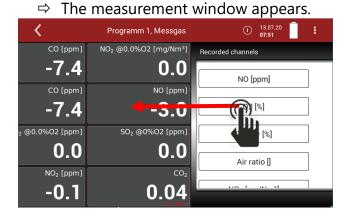
Storing measured values

You can assign the measured values to the corresponding site and save them.

- ► Touch the menu Measure.
 - ⇒ The measurement window appears
- ► Touch the "Context menu" (19).
 - \Rightarrow A selection list appears.
- ► Touch "Store ".
 - \Rightarrow A selection list appears.

X	Please select site	10/02/19 08:23	•
1; Mustermann, ;	Site1		
2; ; Site 2			
3; ; Site 3			

► Choose the desired site.


 \Rightarrow The measured values are stored.

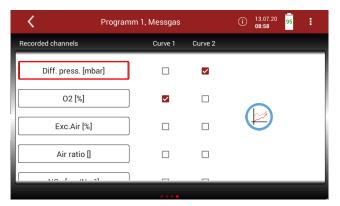
The measurement continues until you switch off the analyser.

See also Chapter Recalling stored measurements, Page 71.

Select channels for graphic display

You can select a maximum of eight channels and have them displayed graphically.

Touch the menu

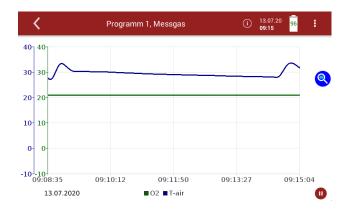

- ► Touch the display.
- ► Move the window to the left.
 - ⇒ The window with "Recorded channels" appears.

K Prograi	mm 1, Messgas		(i) 13.07.20 08:14	:
Recorded channels	Curve 1	Curve 2		
CO2 [%]		v		
02 [%]				
Exc.Air [%]				
Air ratio []				

- Press a measurand that you want to replace.
 - \Rightarrow A window appears.

۲.	Program	ım 1, Messgas		zero 26:49	í	13.07.20 08:33	91	:
Recorded	channels	Measurand	Curve 1	Curve 2	-			
		02 [%] — Air ratio []						
		Exc.Air [%]						
		CO2 [%]						
	Air Tatio	CO [ppm]						
L	ESC	CO @0%O2 [pp —	m]			ОК		

- ► Select the desired measurand.
- ► Press OK.
 - \Rightarrow The measurand is replaced.


You have the possibility to display two measurands simultaneously as a curve.

Set check marks at "Curve 1" and "Curve 2" for the measurands you want to display as a curve.

K Program	nm 1, Messgas		(j) 13.07.20 96 5 09:09 5
Recorded channels	Curve 1	Curve 2	
T-air [°C]			
O2 [%]			
Exc.Air [%]			
Air ratio []			

▶ Press the graphic symbol.

 \Rightarrow A diagram appears.

- If necessary, touch to stop the graphical display.
 The measurement will be continued in the background.
- \blacktriangleright If necessary, touch to continue the graphical display.

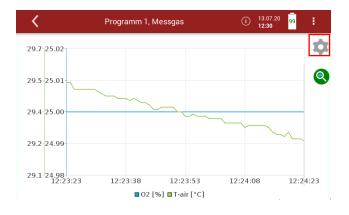
Starting Auto-measurement

You can record the measured values for a defined period and have them displayed graphically.

► Touch the menu Measure.

\Rightarrow The measurement window appears.					
<	Programm 1, Mes	sgas	(i) 13.07.20 09:34	6	
Sta	atus []	CO [ppm]	NO ₂ @0.0%O2	[mg/Nm³]	
🛑 zero 🛛 🔵 flow		-32.9			
air purge		-32.9		0.0	
	CO ₂	CO [ppm]		NO [ppm]	
0.0	05	-32.9		-5.5	
SO ₂	[ppm] SO ₂ @	0.0%O2 [ppm]	SO ₂ @0%	602 [ppm]	
-0	0.2	0.0		0.0	
Diff. press. [mbar]	NO ₂ [ppm]		CO ₂	
0.0	01	-0.1		0.05	

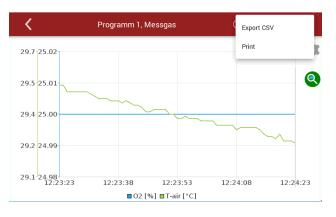
- ► Touch the "Context menu" (19).
 - \Rightarrow A selection list appears.
- ► Touch "Start logging "
 - \Rightarrow A setting window appears.


<	Test proc	gram, Measure	(i) 15.02.2: 10:04	2
	Duration	Auto-measurement Interval	Mean values	
	45 min	1 hour		print
	1 hour	1 sec	average off	print total average value
ESC	1.5 hours	2 sec		ок

- ► Set the desired measurement duration.
- ► Set the desired interval.
- ▶ Specify whether a mean value is to be calculated.
- ► Touch "OK "
 - ⇒ The window "Please select site "appears.
- Select the desired site.
 - ⇒ The Auto-measurement starts automatically.
 - \Rightarrow The Auto-measurement ends automatically.
 - ⇒ A protocol of the Auto-measurement appears

<	Programm 1, Messgas	(i) 13.07.20 96
Average measur	ement	
Average values:		13.07.2020 09:41:47
Status	112	
CO	-32.9	ppm 🕑
NO2 @0.0%O2	0.0	mg/Nm³
¥ CO2	0.05	%
NO	-4.9	ppm
SO2	-0.1	ppm
SO2 @0.0%O2	0.0	ppm
SO2 @0%O2	0.0	ppm
Diff. press.	0.01	mbar
NO2	-0.1	ppm
CO @0.0%O2	0.0	mg/Nm³
T 212	2.2.5	°C .

▶ Press the graphic symbol.


 \Rightarrow A diagram appears.

If necessary, press the gear wheel symbol to display other measurands in graphical form.

You can also export or print the data of the automatic measurement.

- ► Insert a USB-stick into the analyser.
- ► Touch the context menu.
 - \Rightarrow A Selection list appears.

- ► Select Export CSV or Print.
 - \Rightarrow The data is exported or printed

NOTE

If a zero point was taken during a Auto-measurement (manually initiated or by a set time interval), the measured values are kept constant in the display. Immediately before the end of the zeroing, the real measured values are displayed again.

Stopping Auto-measurement

The Auto-measurement can be stopped manually at any time.

- Touch the context menu (19) while the measurement is recorded.
 - \Rightarrow A selection list appears.
- ► Touch "Stop logging "
 - ⇒ The Auto-measurement is stopped.

7 Data memory

7.1. Organizing data memory

Base of the data memory of the analyser is a set of sites stored in the instrument. Every site exists of a unique site number and 12 freely usable text lines which can have, e.g., the address, customer name etc.

•The instrument can store up to 1.000 different sites.

- •Sites can be created in the instrument and be changed.
- •Measurements are stored by assigning them to a site.
- •Measurements can be, on this occasion, singles flue gas measurements or other measuring programs available in the instrument.

7.2. Managing sites

In the menu Site, you can add a new site, make changes on an added site, delete a site and display a list of saved sites.

Adding a new site

▶ Press the menu Sites.

Sites	0	20.05.21 09:44
		MORE
	Sites	Sites

 \Rightarrow A window appears.

▶ Press ADD SITE .

<	Sites		(i)	20.05.21 09:47	:
Site No.	1	Supplement			
Site Name		Status			
Name		Comment			
Additional info		Phone			
Street	No	Email			
City		Add. info.			
Postcode					
SAVE					

- \Rightarrow A window appears.
- Enter the site data.
- ► Touch "SAVE ".

 \Rightarrow The site is saved.

Changing site data

► Touch the menu Sites.

<	Sites	(i)	20.05.21 09:53	Î	:
1; ; Site 1					
2; ; Site 2					
3; ; Site 3					
ADD SITE					MORE

 \Rightarrow A selection list appears.

► Select the desired site.

<	Sites	() 20.05.21 09:56	
Site No.	1	Supplement	
Site Name	Site 1	Status	
Name	Example	Comment	
Additional info		Phone	
Street	Baker Street No. 213	Email	
City	London	Add. info.	
Postcode	EC1A 1AA		
STORE	MEASUREMENTS DELETE		

- \Rightarrow A window appears.
- ► Change the desired data.

► Touch "STORE ".

<	Sites	í	20.05.21 09:56	1
1; Example, ; Sit	e 1			
2; ; Site 2				
3; ; Site 3				
ADD SITE				MORE

 \Rightarrow The changes are stored.

Deleting sites

▶ Press the menu Sites.

<	Sites	(i) 20.05.21 09:56
1; Example	, ; Site 1	
2; ; Site 2		
3; ; Site 3		
ADD SITE		MORE

 \Rightarrow A selection list appears.

► Select the desired site.

> A <	window	Sites	S.	10/02/19	:
`	-	01123		11:56	•
Site No.	1		Supplement		
Site Name	Site 1		Status		
Name	Example		Comment		
Additional info			Phone		
Street	Baker Street	No. 46	Email		
City	London		Add. info.		
Postcode	EC1A 1AA				
STORE	MEASUREMENTS	DELETE			
Press	s Delete.				
<		Sites		(i) 20.05.21 10:24	:
2; ; Site 2					
3; ; Site 3					

 \Rightarrow The site is deleted.

Recalling stored measurements

Stored measurement can be displayed individually for each site.

- ► Touch the menu Sites.
 - \Rightarrow A selection list appears.
- ► Touch the desired site.
 - \Rightarrow A window appears.

<		Sites		10/02/19 11:56	:
Site No.	1		Supplement		
Site Name	Site 1		Status		
Name	Example		Comment		
Additional info			Phone		
Street	Baker Street	No. 46	Email		
City	London		Add. info.		
Postcode	EC1A 1AA				
STORE	MEASUREMENTS	DELETE			

► Touch "MEASUREMENTS".

⊐> A sei	ection list appe	ars.	
<	Sites	(i) 20.01.22 14:57	
☑ 19.01.2022	13:18:13, ,		
☑ 19.01.2022	13:42:33, ,		
20.01.2022	09:55:07, ,		
20.01.2022	10:32:57, ,		Î
20.01.2022	11:07:51, ,		
EXPORT CHECKED AS CSV	EXPORT CHECKED IN ONE FILE	DELETE CHECKED	DESELECT ALL

- ► Touch the desired measurement.
 - \Rightarrow The measurement window appears.

Delete stored measurements

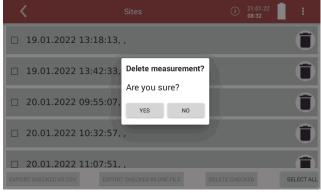
There are two ways to delete measurements.

- You can delete measurements individually.
- You can select several measurements and delete them at the simultaneously.
- ▶ Press the menu sites.
 - \Rightarrow A selection list appears.
- Press the desired site.

⇒ A window appe	ars.
-----------------	------

<		Sites		10/02/19 11:56	÷
Site No.	1		Supplement		
Site Name	Site 1		Status		
Name	Example		Comment		
Additional info			Phone		
Street	Baker Street	No. 46	Email		
City	London		Add. info.		
Postcode	EC1A 1AA				
STORE	MEASUREMENTS	DELETE			

Press MEASUREMENTS.


The stored measurements are displayed.

<	Sites	(i) 21.01.22 08:23	•
□ 19.01.2022 13	3:18:13, ,		Î
□ 19.01.2022 13	3:42:33, ,		Î
□ 20.01.2022 09	9:55:07, ,		Î
□ 20.01.2022 10):32:57, ,		Î
□ 20.01.2022 11	1:07:51, ,		
EXPORT CHECKED AS CSV	EXPORT CHECKED IN ONE FILE	DELETE CHECKED	ELECT ALL

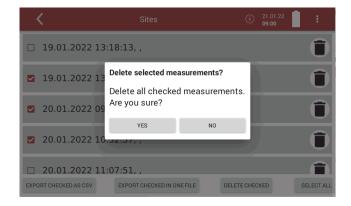
Delete single measurement

\Rightarrow A message appears.

► Press YES

 \Rightarrow The selected measurement is deleted.

Delete several measurements



- ► Select the measurements you want to delete.
 - ⇒ The button DELETE CHECKED becomes active.

Press the button DELETE CHECKED.

⇒ A message appears.

Press YES.

⇒ The selected measurements are deleted.

7.3. Data transfer via USB (CSV export)

The data exchange format is CSV. A character-separated values (CSV) file is a simple text format for a database table. The analyser uses a semicolon ';' as value separator. CSV is a simple file format that is widely supported, so it is often used to move tabular data between different computer programs, for example Microsoft Excel[™] or Access[™], that support the format.

The following functions are available

- Export of flue gas measurements
- ▶ Insert a USB-stick into the analyser.
- ▶ Press the menu Sites.
 - \Rightarrow A selection list appears.

► Select the desired site.

 \Rightarrow A window appears.

<	Sites	(i) 26.01.21 10:21			
Site No.	7	Supplement			
Site Name	Site 7	Status			
Name	Example	Comment			
Additional info		Phone			
Street	Backer Street No. 46	Email			
City	London	Add. info.			
Postcode	EC1A 1Aa	-			
STORE	MEASUREMENTS DELETE				
Press MEASUREMENTS					
⇒ TI	he stored measu	rements are displayed			

You have the option to export measurements as single files. You have the option of exporting several measurements in one file.

- ► Select the desired measurement.
 - ⇒ The button EXPORT CHECKED AS CSV becomes active.
 - ⇒ The button EXPORT CHECKED IN ONE FILE becomes active.

<	Sites	(i) 21.01.22 08:53	
□ 19.01.2022 13:	18:13, ,		Î
☑ 19.01.2022 13:4	42:33, ,		Î
20.01.2022 09:	55:07, ,		
20.01.2022 10:	32:57, ,		
□ 20.01.2022 11:0	07:51, ,		Î
EXPORT CHECKED AS CSV	EXPORT CHECKED IN ONE FILE	DELETE CHECKED	SELECT ALL

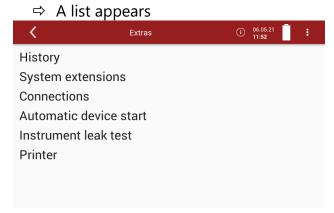
- ▶ Press EXPORT CHECKED AS CSV or EXPORT CHECKED IN ONE FILE.
 - ⇒ Depending on the selection, the measurements are exported individually or all selected measurements are exported in one file.
 - ⇒ A message appears

- ► Select, if you want to export with header in file.
 - ⇒ The directory 1113Export is created on the USB stick.
 - ⇒ The selected measurements are stored in the 1113Exportdirectory.
- ► Open the CSV file.

(Do not use dat-files or internal log files)

Export with header

1	Device data:	MGAprime	063450		
2	Site data: Site 1 Example				
3	Date	Time		O2ref %	02 %
4	20.05.2021	10:31:01		10	20,92


Export without header

1	Date	Time		O2ref %	O2 %
2	20.05.2021	10:31:01		10	20,92
3	20.05.2021	10:31:48		10	20,91
4	20.05.2021	10:32:21		10	20,93
5	20.05.2021	10:40:29		10	20,93

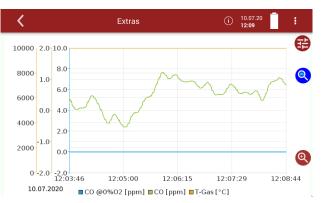
8 Extras

8.1. Open menu Extras


Press Extras

► Select the desired menu item.

8.2. History


- ► Open the menu Extras.
 - See also chapter 8.1 Open menu Extras, S. 77
 - \Rightarrow A selection list appears.
- ▶ Press "History".

- ► Press "DATE".
 - \Rightarrow A selection list appears.

	<	Extras	02.10.19 15:48
		Choose period time	
	2019_10_02log.DAT		
	2019_09_27log.DAT		
	2019_09_26log.DAT		
	2019_09_19log.DAT		
	2019_09_16log.DAT		
	2019_09_12log.DAT		
	2019_09_11log.DAT		
	2019_08_26log.DAT		
à	2019_08_23log.DAT		
	2019_08_22log.DAT		
		ESC	

- ► Choose the desired period time.
 - \Rightarrow The chosen time period is displayed graphically.

	Channel		Starttime	Endtime
	CO [ppm]	•	04:00 👻	17:30 👻
~	Air ratio []	•	selecte	d time axis
~	CO2 [%]	•	11:30	11:30
			\odot	ESC OK

- If necessary, press
 - \Rightarrow A window appears.
 - ⇒ You have the possibility to change the displayed channels and to have them displayed graphically.
 - ⇒ You have the possibility to change the Starttime and the Endtime.
 You can activate or deactivate the selected time axis.

<		Extras	0	06.05.21 13:41
2	Channel CO [ppm] * Air ratio [] * CO2 [%] *		Starttime 04:00 Selected t 11:30	Endtime 17:30 • ime axis 11:30 ESC OK
	necessary, j A window			
<	E	ktras	0	06.05.21 15:16
	min	ma	x	division
CO [ppm]		+ - 1	• + -	7 +
Air ratio	1 2			F 1

8.3. System extensions

▶ Press Ok, to exit the window.

CO2 [%]

You have the possibility to expand the analyser with options. For this you will receive an option file from the manufacturer.

▶ You can set min. and max. and the division of the selected channels.

► Copy the options file onto a USB stick.

NOTE

You can also save the option files in subfolders. The analyser will search the folder structure on the USB stick up to the second hierarchy level. Save the option file in the folder structure above, if the option file is not is displayed

- ► Insert the prepared USB stick into the analyser.
- ► Open the menu Extras
 - See also chapter 8.10pen menu Extras, Page 77.

- Press System extensions
 - \Rightarrow A window appears.
 - \Rightarrow The options stored on the USB stick are displayed.
- ▶ Press UPDATE LIST, if no options are displayed.

	Extras	í	21.01.21 07:50	89
~	option 063029 05 NDIR Fastmode (0=Aus, 1=An) 0.dat			
\checkmark	option 063029 05 NDIR Fastmode (0=Aus, 1=An) 1.dat			
6				
	LOAD CHECKED OPTIONS			UPDATE LIST

- Select the desired Options.
- Press LOAD CHECKED OPTIONS.
 - \Rightarrow A message appears.

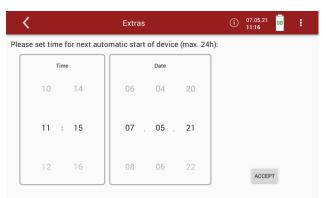
<	Extras	()	21.01.21 09:40	- ÷
	29 05 NDIR Fastmode (0=Aus, 1=An) 0.dat 29 05 NDIR Fastmode (0=Aus, 1=An) 1.dat			
	Options set Option number 5 5 were success	sfully set.		
	LOAD CHECKED OPTIONS		2	UPDATE LIST

- Press OK.
 - \Rightarrow The option was successfully set.
- Perform a restart.
 - \Rightarrow After the restart, the option is available.

8.4. Connections

You can view the connections on the display of the analyser.

- ► Open the menu Extras
 - See also chapter 8.1 Open menu Extras, Page 77.
- Press Connections.
 - \Rightarrow The Connections of the analyser are displayed.
 - See also chapter 3.4 Connectors, Page 14.


8.5. Automatic device start

You have the possibility that the analyser performs an automatic device start at a time determined by yourself.

► Open the menu Extras

See also chapter 8.1 Open menu Extras, Page 77.

- Press Automatic device start
 - \Rightarrow A window appears.

▶ Set the desired time for the automatic device start.

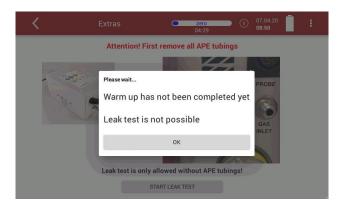
NOTE Note that you can set an automatic device start for max. 24 hours into the future.

A message is displayed if the time interval is too long.

- Press ACCEPT.
 - \Rightarrow A message appears.
- ► Accept the message.
 - ⇒ The time of the next automatic device start is taken over and shown in the display.

If you have activated an automatic device start, a message appears when the analyser is switched off.

- ▶ Pull the heating hose out of the analyser.
- ▶ Pull the probe out of the analyser.
- Press Yes.


 \Rightarrow The system will shut down.

After the analyser has shut down, an LED lights up to indicate that an automatic device start has been set

8.6. Instrument leak test

The analyser device has an integrated leak test to check the tightness of the gas paths.

- Check all plug connections for correct fit.
- Check all hoses and hose connections (from the probe tip to the gas inlet of the analyser) for leaks.
- Open the menu Extras
 - See also chapter 8.1 Open menu Extras, Page 77.
- ▶ Press Instrument leak test.
 - ⇒ A window appears.
 - ⇒ If the analyser is still in the warm-up phase, no leak test can beperformed. A corresponding message is displayed.

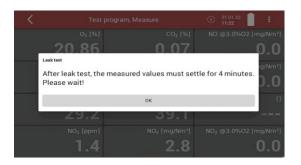
- ► Press OK.
- ► Wait until the warm-up phase is completed.
- Press START LEAK TEST
 - ⇒ A message appears.
- ► Confirm with YES, that the APE tubes are removed.
- ► Seal the gas port.
 - ⇒ The leak test is performed

Or if the complete gas path is to be checked for leaks:

NOTE

With dirt and soot particles on the probe tube the test cap will not seal properly.

The probe tip must be cleaned before you start this test.


- ► Seal off the tip of the probe a leak proof test cap.
 - ⇒ If the system is tight, the traffic light is green and the l/h pointer is
 0.

Exit the window.

Note that measured values are invalid for four minutes after the Instrument leak test. If you open the menu Measure, a corresponding message will be displayed

NOTE

8.7. Printing measurement results

In the menu Printer, you can select the type of connection between an optional printer and the analyser.

You have 2 options to connect the printer:

- USB connect with USB wire
- WiFi0 internal WiFi
- ► Open the menu Extras
 - See also chapter 8.1 Open menu Extras, Page 77.
- ► Press Printer.
 - \Rightarrow A window appears.
- ► Choose the desired option.

<	Extras	10/07/19 95 08:56
	DELETE PRINTER JOBS	
	ENABLE PRINTER	
	RESET	
	USB	
	WiFi 0	
	·	

Printing current measurement results

- Switch on the printer.
- ► Go to the menu Measurement.
 - \Rightarrow The measurement window appears.
- Press the "Context menu" (19).
 - \Rightarrow A selection list appears.

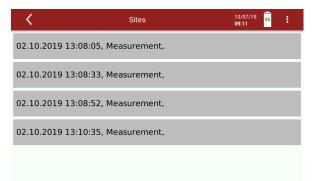
<	Pro	Programm 1, Natural gas		
	O2 [%]	CO @0%O2 [ppm]	Zero point gas	
	20.93	0.0	Zero point pressure	
	NO2 [ppm]	NOx @0%O2 [ppm]	Store 1]	
	-0.2	0.0	Print	
p	CO2 [%]	CH4 [mg/Nm ³]	Start logging	
	0.07	-0.3	Gas flow measurement	
curre	ent pump load [%]	Sample flow [l/h]	CO [ppm]	
	68	59.7	-0.1	

▶ Press Print.

 \Rightarrow The measurement is printed out with a slight delay.

Printing stored measurement results

- Switch on the printer.
- ▶ Press the menu "Sites".
 - \Rightarrow A selection list appears.



 \Rightarrow A window appears.

<	Sites			()	20.05.21 09:56	Ê	:
Site No.	1		Supplement				
Site Name	Site 1		Status				
Name	Example		Comment				
Additional info			Phone				
Street	Baker Street	No. 212	Email				
City	London		Add. info.				
Postcode	EC1A 1AA						
STORE	MEASUREMENTS	DELETE					

► Press MEASUREMENTS.

⇒ The stored measurements are displayed.

▶ Press the desired measurement.

 \Rightarrow The measurement window appears.

▶ Press the context menu (19).

 \Rightarrow A selection list appears.

▶ Press "Print".

⇒ The measurement is printed out with a slight delay

9 Service

9.1. Open menu Service

► Press Service.

(i) 10.05.21 97 09:15

Select the desired menu item.

9.2. Service values

This screen displays a number of internal parameters and their values.In case of unexpected behaviour of the analyser it might be helpful tocommunicate those values to our worldwide service staff: <u>https://www.mru.eu</u>

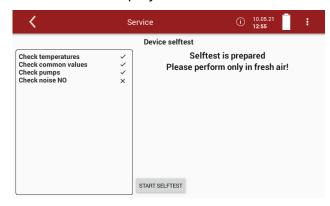
- ► Open the menu Service.
 - See also chapter 9.1 Open menu Service, Page 86.
- Press Service values.
 - ⇒ Internal parameters and their values appear.

<	Service	(i) 19.04.21 15:49
Modbus-Device:	86	<<<<< receive
TX counter:		60
Errors:		0
AbsPressure	100	6.883 mV
AbsPressure	102	1003.4 hPa
Temperatur	104	552.25 mV
Temperatur	106	55.2 °c

9.3. Performing Device selftest

With the Device selftest you can test certain parameters of the analyser.

- ► Open the menu Service.
 - See also chapter 9.1 Open menu Service, Page 86.
- ► Press Selftest device.
 - \Rightarrow A window appears.


- ▶ Press START SELFTEST.
 - ⇒ The Device Selftest starts.
 - \Rightarrow As long as the Device selftest is running, \mathfrak{S} appears in the display.

<	Service	Ċ) 10.05.21 12:52	1
Check temperatures Check common values Check pumps Check noise NO	Device selfte		window 1	
	START SELFTEST			

- ⇒ The Device selftest stops automatically.
- A successful Device selftest is indicated with ✓ in the display for each individual parameter.

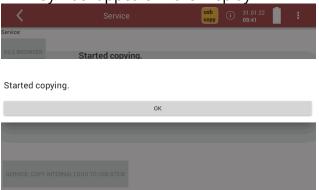
If the Device selftest for a particular parameter was not successful \times is shown in the display.

In the case of an Error message, please contact our customer service or contact one of the worldwide MRU service partners via <u>www.mru.eu</u>

9.4. Internal log settings

The analyser stores internal parameters at regular intervals to allow for an optimized support from experienced service staff. These files can be copied to a connected USB stick and sent via email if required to do so.The data will be anonymized. It is not possible to identify sites or measuring points.

Copying all log data


- ▶ Insert a USB-stick into the analyser.
- ► Open the menu Service.
 - See also chapter 9.1 Open menu Service, Page 86.
- ▶ Press Internal log settings.

\Rightarrow A window appears.

<	Service	í	31.01.22 09:37	:
Service:				
FILE BROWSER				
EXPORT NDIR FACTOR				
SERVICE: COPY INTERNA	LOGG TO USB STICK			

- ▶ Press "SERVICE:COPY INTERNAL LOGG TO USB STICK".
 - \Rightarrow A window appears.
 - \Rightarrow The copy process is started.

⇒ A Symbol appears in the Display

- ► Press OK.
 - ⇒ The directory [serial number] Logg was created on the USB-Stick.
 - ⇒ The log files are saved in the directory [serial number].
 - ⇒ After copying, the display shows "File(s) successfully copied".
- ► Touch OK.

NOTE If the analyser is operated for a long time, the copying process can take a long time.

Copying single log data

- ▶ Insert a USB-stick into the analyser.
- ► Open the menu Service.
 - See also chapter 9.1 Open menu Service, Page 86.
- ▶ Press Internal log settings.

⇒ A winde	ow appears.		
<	Service	(i) 31.01.22 09:37	1
Service:			
EXPORT NDIR FACTOR			
SERVICE: COPY INTERNAL I	LOGG TO USB STICK		

- ► Press FILE BROWSER
 - \Rightarrow A selection list appears.

<	Service	(i)	31.01.22 09:59	•
Valuedefines_11	1130_100.ini			
2022_01_31log.	.DAT			
2022_01_28log.	.DAT			
2022_01_27log.	.DAT			
2022_01_25log.	.DAT			
2022_01_24log.	.DAT			
2022_01_21log.	.DAT			
2022_01_20log.	.DAT			
2022_01_17log.	.DAT			
2022_01_14log.	.DAT			
2022_01_13log.	.DAT			
2022 01 11log.	.DAT			
	ESC			

- ▶ Press the desired log file.
 - \Rightarrow A window appears.
 - \Rightarrow The desired log file appears in the window.
- ▶ Press COPY TO EXTERN USB-STICK.

<	Service	(i) 31.01.22 09:59
Service: FILE BROWSER EXPORT NDIR FACTOR	file:///media/usb1/064048Logg/	2022_01_31log.DAT
SERVICE: COPY INTERNA	L LOGG TO USB STICK	

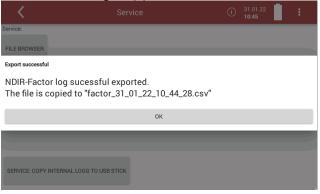
 \Rightarrow A window appears.

\Rightarrow The copy process is started.							
<	Service	usb copy	31.01.22 10:05				
Service: FILE BROWSER	file:///media/usb1/064048	Logg/2022_01_31k	og.DAT				
EXPORT NDIR FACTOR	COPY TO EXT J Please w	/ait	DELETE INTERN FILE				
SERVICE: COPY INTERNA	L LOGG TO USB STICK						

- ⇒ The directory [serial number] Logg was created on the USB-Stick.
- ⇒ The log files are saved in the directory [serial number].
- ⇒ After copying, the display shows "File(s) successfully copied".
- ► Press "OK

Export NDIR – Factors

If your analyser has an NDIR cuvette, you can export the NDIR factors to a USB stick.


- ► Insert a USB-stick into the analyser.
- ► Open the menu Service.
 - See also chapter 9.1 Open menu Service, Page 86.
- ▶ Press Internal log settings.

⇒	A window	i appears.
---	----------	------------

<	Service	(i)	31.01.22 09:37	•
Service:				
FILE BROWSER				
EXPORT NDIR FACTOR				
SERVICE: COPY INTERNAL LOGG TO USB	STICK			

▶ Press EXPORT NDIR FACTOR.

- \Rightarrow The NDIR factors are exported.
- \Rightarrow On the USB stick, the folder NdirFactors is created.
- \Rightarrow The NDIR factors are stored in the folder NdirFactors.
- ⇒ A message appears.

► Press OK.

10 Info

10.1.Open menu Info

► Press Info.

⇒ A win	dow appears.				
<	Info	=	(i) 11.05.2 11:36	21 96	1
Device infe	c				
Device usa	age				

► Select the desired menu item.

10.2. Calling up device info

In the menu Device info, you can, for example, display the serial number, the firmware version and version information for installed modulesand installed options.

- ► Open the menu Info.
 - ☞ See also chapter 10.1 Open menu Info, S.92.
- ▶ Press Device info.
 - \Rightarrow A window appears.

<	Info		10/07/19 09:25	
Serial number	063029	Hardware version	V1.00	
Firmware version	1.001.028	Production date	12.06.2018	
Image Version	1.000.005			
	IN	FO		
	0	PTIONS		

- Press INFO
 - \Rightarrow A window appears.
 - ⇒ Version information for specific modules is displayed

<	Info		26.09.19 15:27	:
Name:	installed	expected		
AKM Module:	V1.01.01	V1.01.01		
GKM Module:	V1.01.01	V1.01.01		
ESM Module:	V1.01.02	V1.01.02		
NDIR Module:	V1.01.00	V1.01.00		

- ► Exit the window.
- ► Press OPTIONS.
 - \Rightarrow A window appears.
 - \Rightarrow The installed options are displayed.

	✓ Info 24.09.19 08:46	
•	Dther Sensor	
	O2 paramagnetic	
•	NDIR Sensors	
	CO 0-200 up to 10.000 ppm	
	CO2 0-40.00 %	
	CH4 0-500 up to 10.000 ppm	
	N2O 0-200 up to 1.000 ppm	
	NO 0-250 up to 4.000 ppm	
		۰.

10.3. Device usage

You have the possibility of displaying the operating time of the analyser, the total usage of certain analyser components and the remaining usage time until the next maintenance.

- ► Open the menu Info.
 - See also chapter 10.1 Open menu Info, S.92.
- ▶ Press Device usage.
 - \Rightarrow A window appears.

<	Info		11.05.21 12:33
Operating time of MGAp Next maintenance is sch		usage	
<u>Total usage</u> Gaspump	28h:34m	<u>Remaining usage until n</u> Maintenance Gaspump	naintenance 51W 2D 3971h:25m

If a device component has exceeded the prescribed service life, the analyser should be maintained immediately at a service centre.

11 Maintenance and cleaning

11.1.Cleaning and maintenance

The analyser needs only low maintenance effort for long value preservation:

A CAUTION

Acid from the condensate Acid burns may result from

Acid burns may result from weakly acidic liquids from the condensate.

- If you come into contact with acid, wash the area immediately using a lot of water.
- ► Note the safety data sheet for phosphoric acid (10%).

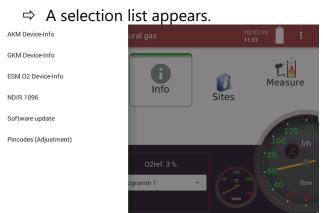
After every measurement:

- Remove the gas sampling tube from the analyser, so that the hose can dry.
- Check the filter in the probe head. Replace the filter if necessary.

Occasionally:

- ► Clean the probe and the probe hose.
- If the analyser was not used for a longer period of time, charge the battery first.
- ► Charge the battery approximately every 4 weeks.
- Check the round filter at the front of the instrument. Replace the filter if necessary.

11.2. Service check


An annual service check and if necessary, adjustment of the sensors at an MRU service department (<u>www.mru.eu</u>) are recommended for the preservation of value.

12 Simple service work

12.1. Information of the analyser components

Information about analyser components is helpful in case of service or inquiries.

► Touch 🗏 .

► Choose the desired component of the analyser.

⇒ The information about the component of the analyser is displayed.

<	AKM Device-Info		10/10/19 87 14:49
AK-Modul		4-20mA out1	20.0
Serial number Firmware version	750098 V1.01.01	4-20mA out2	0.0
Hardware version	V1.00	4-20mA out3	4.0
Bootloader version	V0.00.01	4-20mA out4	0.0
	15.08.2017	4-20mA out5	2.0
Adjustment date	06.02.2106	4-20mA out6	20.0
		4-20mA out7	4.0
		4-20mA out8	0.0
		4-20mA in1	- 0.0 mA
		4-20mA in2	-0.0 mA

12.2. Updating the firmware

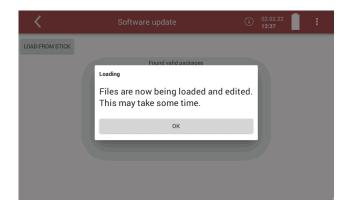
If necessary, you will receive a new released data package from the manufacturer for updating the firmware and the individual modules. The data package consists of a ZIP data package. The data package has the ending .mru.

Update main firmware

► Copy the data package to a USB stick.

You can also save the data package in subfolders. The analyser will search the folder structure on the USB stick up to the second hierarchy level. Save the data package in the folder structure above, if the option file is not is displayed

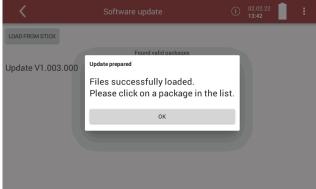
NOTE


- ► Connect the analyser to the power supply.
- Switch on the analyser.
- ▶ Insert the prepared USB-stick into a USB socket of the analyser.
- Press
 - \Rightarrow A selection list appears.
- Press Software update.
- ► A window appears.

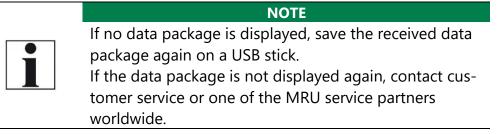
<	Software update	í	02.02.22 13:32	
LOAD FROM STICK				
	Found valid packages			



NOTE Please note that you must first update the main firmware. After the restart you can update the modules.


- Press LOAD FROM STICK
 - \Rightarrow A message appears.

► Press OK.



- ► Wait until the loading process is completed.
 - ⇒ After the loading process is completed, a message appears.


Press OK.

 \Rightarrow The valid data packages found are displayed.

Software update	(i)	02.02.22 13:52	1
Found valid packages			
state: OFFICIAL			
	Found valid packages	Found valid packages	Found valid packages

► Select the desired data package.

► Select parts of the data package that you want to update.

- ► Press LOAD CHECKED PARTS
 - \Rightarrow A message appears.
 - \Rightarrow To conclude the update process, the analyser must be restarted.

- Press YES.
 - ⇒ The analyser performs a restart.
 - ⇒ You can now update the software of single modules.

Update firmware of single modules

	NOTE
ĺ	Note that you must first update the main firmware. Af- ter restarting, you can update the firmware of single modules.

- ► Go to the window Software update.
 - See also chapter Update main firmware, Page 97.
- Perform the steps as described in the chapter Update main firmware until the following window appears.

- Press SINGLE MODULE UPDATE.
 - \Rightarrow A window appears.

► Press YES.

 \Rightarrow The update is started.

Modul firmware update
Update started
"5632 Bytes / 61898 Bytes. Writing 56266"

⇒ After the update has been performed successfully, a message appears.

<	Software update	(j	02.02.22 15:13	:
	Modul firmware update			
AK Module: V1.01.12				
— EC not istalled: V1.00.88	Update performed successfully			
NDIR 1096: V1.01.16	Please restart the system!			
GK Module: V1.01.34	ОК			
02/H2 Module: V1.01.07	UK			
- 1102 not installed: V1.00.43				

► Press OK.

▶ Please restart the system.

13 Specifications

The technical data listed here may differ depending on the analyser configuration.

• means: included in the standard scope of each analyser

O means: optional possible, availability depends on device configuration

13.1.Technical data

T
+5°C - +45 °C
90 %
-20 °C - +50 °C
Li-Ion, 48 Wh, 6 h
96 Wh
26Wh
2h = >90%;
4h = 100%
3h=>90%
5h= 100%
7" Touch, < 750 cd/m ² , 800*480 px
86 - 265 V / 47 - 63 Hz / 105 W
300 W typical
(600W max.)
7,5 kg
16 kg
43 cm x 29 cm x 15 cm
52 cm x 51 cm x 30 cm
Aluminium / TPU
IP20

13.2. Specifications of NDIR technology

ArtNr.	Gas	Measuring Range	Resolution	Accuracy	T90
10561	CO	100030.000 ppm	1 ppm	±10 ppm / 2%	
	CO ₂	40 Vol.%	0,01 Vol.%	±0,1 Vol.% / 2%	40s
	CH_4	1000 10.000 ppm	1 ppm	±10 ppm / 2%	
	CO	100030.000 ppm	1 ppm	±10 ppm / 2%	
10560	CO ₂	40 Vol.%	0,01 Vol.%	±0,1 Vol.% / 2%	40s
	C_3H_8	1000 10.000 ppm	1 ppm	±10 ppm / 2%	

13.3. Electrochemical Sensor, Sensor for Temperatures and Pressure

Electrochemical Sensor	O ₂ Long Life
Measuring Range	0 - 25 Vol%
Resolution	0,01 Vol%
Abs. Accuracy	± 0,2 Vol%
Response Time T90	< 20s
Years expected lifetime (@air)	5 Years
Electrochemical Sensor	СО
H2 compensated	
Nom. Measuring Range	0 - 10000 ppm
Overload Range	< 20000 ppm
Resolution	1
Accuracy abs. / reading	± 10 ppm
	5 % (0 - 10000 ppm)
	10 % (> 20000 ppm)
Response Time T90	< 40 s
Option	CO low
Measuring Range	300 ppm
Resolution	0,1 ppm
Accuracy abs. / reading	2,0 ppm / 5 %
Electrochemical Sensor	CO high
Nom. Measuring Range	0 - 4000 ppm
Overload Range	< 20000 ppm
Resolution	1
Accuracy abs. / reading	± 100 ppm
	5 % (0 4000 ppm)
	10 % (> 4000 ppm)
Response Time T90	< 40 s
Electrochemical Sensor	NO
Nom. Measuring Range	0 - 1000 ppm
Overload Range	< 5000 ppm

Resolution	1		
Accuracy abs./reading	± 5ppm		
	5 % (0 1000 ppm)		
	10 % (> 1000 ppm)		
Response Time T90	< 30 s		
Option	NO low		
Measuring Range	300 ppm		
Resolution	0,1 ppm		
Accuracy abs. / reading	2,0 ppm		
	5 %		
Electrochemical Sensor	NO ₂		
Nom. Measuring Range	0 - 200 ppm		
Overload Range	< 1000 ppm		
Resolution	1		
Accuracy abs./reading	± 5 ppm		
	5 % (0 - 200 ppm)		
	10 % (> 200 ppm)		
Response Time T90	< 40s		
Option	NO ₂ low		
Measuring Range	100 ppm		
Resolution	0,1 ppm		
Accuracy	2,0 ppm / 5%		
Electrochemical Sensor	SO ₂		
Nom. Measuring Range	0 - 2000 ppm		
Overload Range	< 5000 ppm		
Resolution	1 ppm		
Accuracy abs./reading	± 10 ppm		
	5 % (0 - 2000 ppm)		
	10 % (> 2000 ppm)		
Response Time T90	< 40 s		
Option	SO ₂ low		
Measuring Range	100 ppm		
Resolution	0,1 ppm		
Accuracy	4,0 ppm / 5%		

Electrochemical Sensor	H ₂ S	
Nom. Measuring Range	0 - 2000 ppm	
Overload Range	< 10000 ppm	
Resolution	1 ppm	
Accuracy abs./reading	± 5 ppm	
	10 % (0 – 500 ppm)	
	15 % (> 500 ppm)	
Response Time T90	< 40 s	
Paramagnetic Sensor	O ₂	
Measuring Range	25 Vol.%	
Resolution	0,01 Vol.%	
Accuracy	0,1 Vol.%	
Flue gas temperature	ТА	
Measuring Range with high grade	0 - 800° C	
steel probe pipe		
Measuring Range with Inconel	0 - 1100° C	
probe pipe	0 - 1350° C	
Short time only (up to 20 mins)		
Accuracy abs. / reading	±2° C / 1%	
To be connected to base unit		
Air temperature	ТІ	
Measuring Range	0 - 100°C	
Accuracy	1 °C	
Draft		
Measuring Range	± 120 hPa	
Accuracy abs. / reading	0,02 hPa	
	1 %	
Differential Pressure		
Measuring Range	± 120 hPa	
Accuracy abs. / reading	0,02 hPa	
	1 %	
Barometric Pressure	Pabs	
Measuring Range	300 - 1200 hPa	
Accuracy	± 3 hPa	

13.4. Gas sampling and conditioning

Max suction range gas pump	350 hPa
gas flow typ	90 l/h
Single Stage Gas cooler	•
Temperature Peltier cooler (during	5° C
grid and battery operation)	
Batt operating hours with gas cooler	1h45min
(1 Batterypack)	
Batt operating hours with gas cooler	30min
(NiMH Battery)	
Condensate removal from gas cooler	•
Humidity supervision and alarm	•
internal gas flow measurement	•
Gas outlet (Vent port)	•
passiv	3 mm
Optional	active (req. for long VENT
	lines or pressurized Vent)

13.5. Gas cooler strategy

The gas cooler strategy depends on the sensors used.

Operating condition	Battery	Mains Supply	Sensor
Vario luxx ECS	max. 20°C or 5°C below ambient temp. and min. 5°C	max.20°C or 5°C below ambient temp. and min. 5°C	ECS sensor temperature
Varioluxx NDIR + ECS	max.20°C or 10°C below ambient temp. and min. 5°C	5°C	ECS sensor temperature only with bat- tery operation
Vario luxx - only paramagnetic	4°C	4°C	only paramagnetic
Varioluxx NDIR + O2 ECS only	5°C	5°C	

CO ₂	
Measuring range (fuel type de-	0 - CO2 max.
pendant)	
Accuracy abs.	± 0,3 Vol.%
Dew point	°C
Losses qA	0 - 99,9 %
Efficiency	0 - 120 %
Measurement values available as	mg/Nm3,
	O2 Ref,
	mg/kWh
	NOX: mg/Nm3 NO2
Velocity	v
based on differential pressure	
measurement with Pitot tube	
Typical measuring range	3 m/s - 100 m/s
Accuracy at 3m/s.	1 m/s
Accuracy > 12 m/s (reading)	± 1%
Resolution	0,1 m/s
Absolute pressure measurement	•

13.7. Analysis and calculations

Continuous measured values	Unit
02	[%]
Temp. ambient air (thermocouple)	[°C]
Temp. flue (thermocouple)	[°C]
СО	[ppm]
Draft	[hPa]
Further continuously calculated	Unit
values	
CO ₂	[%]
ETA	[%]
ETA condensed	[%]
Losses	[%]
Losses condensed	[%]
Lambda	-
Dew point	[°C]
CO/CO ₂ ratio	[%]

13.8. Data communication

USB interface master only (for connection to USB stick or accessories)	0
Support of external SD card reader	0
Ethernet RJ45	0
WLAN	0
Bluetooth	0
RS485 (AUX socket, for connection of external sensor modules)	0
RS485 (isolated, for connection to PC)	0
Analog I/O: 4x input, 8x output, 4 20 mA	0

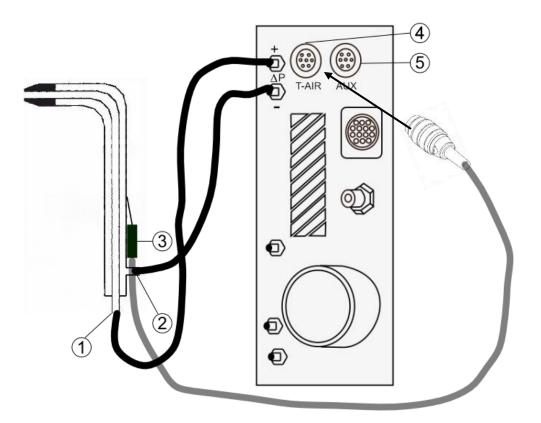
13.9. Fuel type list

This list is for Germany only. Fuel types from other countries can be obtained from MRU GmbH: Web page: <u>www.mru.eu</u>

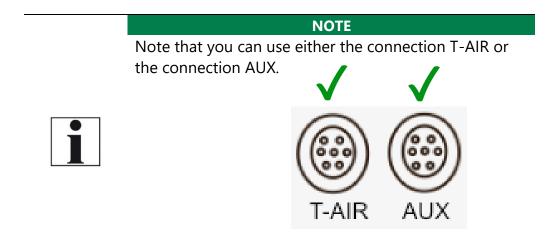
Germany O2max 20,96				
Fuel	CO2max	A1	A2	В
Test gas	0,0	0,00	0,00	0,000
Natural gas (LL)	11,8	0,37	0,66	0,009
Natural gas (E) (*)	12,1	0,37	0,64	0,009
EL heating oil	15,4	0,50	0,68	0,007
S heating oil	15,9	0,50	0,66	0,007
P/B liquid gas	13,7	0,42	0,63	0,008
Propane	13,7	0,43	0,66	0,007
Butane	14,1	0,45	0,67	0,007
Biodiesel	15,7	0,46	0,62	0,005
Dry wood	20,3	0,60	0,62	0,009
Pellets	20,3	0,74	0,77	0,000
Coal	19,1	0,59	0,65	0,009
Lignite	19,4	0,39	0,42	0,009
Peat	19,8	0,66	0,70	0,010
Coke oven gas	10,8	0,29	0,60	0,011
Coal gas	11,7	0,35	0,63	0,011

(*) – is not included, you can create it with the values specified in the table under Self-Determined Fuel if required.

14 Options

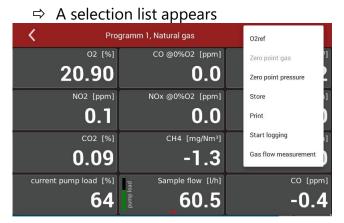

14.1.Gas flow measurement

With the option Gas flow measurement further measured values areavailable:


- v-flow
- Flow rate

Connect analyser to Pitot tube

The following sketch shows an example of the connection of the analyser to a Pitot tube with thermocouple.



Position	Description
1	Connection total pressure
2	Connection static pressure
3	Thermocouple
4	Connection T-AIR
5	Connection AUX

Parameter for gas flow measurement

- ▶ Press the menu Measure.
 - \Rightarrow The measurement window appears.
- Press the "Context menu" (19).

- ▶ Press Gas flow measurement.
 - ⇒ A setting window appears

Κ	Gas flow measuremer	nt	(i) 04.02.22 13:14
Area		_	
		P. abs	1013 hPa
Cross-sect. area	Square 👻	T-gas	25,0 °C
Side length	1,00 m	AUX-tc	25,858 g/mol
		T-air Humuny	0 %
Area	1,00 m²	Pitot factor	1,00
			CHOOSE UNITS

► Change the desired parameters.

NOTE

You have the following options for measuring the temperature:

- Via the probe (T-gas)
- Via the connection T-AIR (T-air)
- Via the connection AUX (AUX-tc)
- See also chapter Connect analyser to Pitot tube, Page 109.

► Press CHOOSE UNITS.

 \Rightarrow A setting window appears.

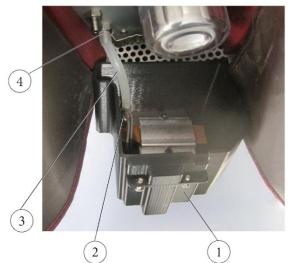
Gas f	low measurement	(i) 06.05.21 10:47	a,
m/s	*		
NI/s	•		
m²			
	m/s NI/s	NI/s •	Gas now measurement 10.47 m/s • NI/s •

- ► Change the desired unit.
- Go back.
 - \Rightarrow The change will be saved.

14.2. Operating the analyser in the extended temperature range

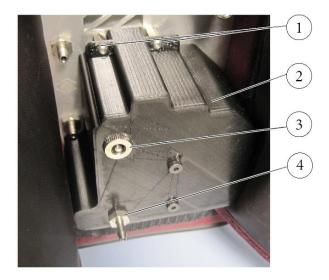
With the option "Operation at extended temperature range" you can carry out measurements up to -15°.

NOTE Note that measurements with a connected Acid Dosing Unit APE are not recommended because phosphoric acid can freeze at low temperatures.


With the option "Operation at extended temperature range" the screw filter and the condensate drain are heated with a heating box. The heating box is supplied with an external power supply unit.

Precautions for use in the extended temperature range

- Ensure to switch on the analyser at a temperature of +5° or higher, as the analyser cannot defrost itself.
- Ensure that T-air at low temperatures is always is plugged in so that the heater can work properly.
- ► Ensure to close all vents in the transport bag during measurement.


Connecting heating box

- Insert the connection hose into the condensate outlet in the heating box (2).
- Insert the connecting hose into the condensate outlet on the analyser (4).

1	Heating box	2	Condensate outlet in
			Heating box
3	Connection hose	4	Condensate outlet on the
			analyser

- Screw the heating box onto the analyser (1). The spacer bolts have internal threads.
- ► Connect the heating box to the external power supply (3).
- ▶ Plug the external power supply into a power socket.
- Ensure that the heating box is supplied with power during the entire measurement.
- ► Ensure to close all vents in the transport bag during measurement.

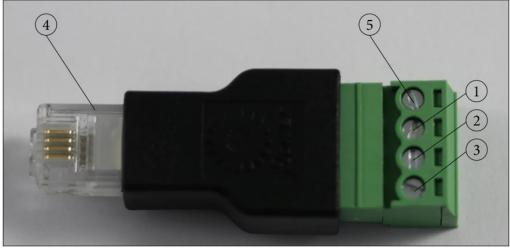
1	Screws /	2	Heating box
	spacer bolt		
3	Connection for external	4	Condensate output on
	power supply		Heating box

14.3. Operating analyser with Nickel-Metal-Hybrid (NiHM)-Battery

Please note that the following information is only relevant for you if an optional NiHM-Battery is installed in your analyser.

The NiHM-Battery is mounted in the analyser instead of a Lilon-Battery. The optional NiHM-Battery is intended for air travel, because the

Regulations for the transport of Lilon-Battery during air travel can often be problematic.


- Note that the NiHM-Battery is not intended for measurement operation, as only a limited Battery life is available.
- Measure only with a connected power supply. Note that the analyser can be used for about 30 minutes in battery mode.
- Use the analyser in battery mode only for short measuring point changes. Furthermore, short power failures can be bridged by battery mode.
- ► The analyser displays a message if no power supply is connected.

- \Rightarrow The message appears 45 seconds after switching on.
- ⇒ The message appears after 90 seconds if the power supply unit is removed during operation.

14.4.RS485 Extern (Option)

RS485 interface with modbus RTU protocol for far distance data transfer over cable.

Electrical connections:

- 1 = A +
- 2 = B-
- 3 = GND
- 4 = Connector to RS485 port (option)
- 5 = Not used
- NOTE: one twisted pair of shielded cable is user scope

Port settings:

Baud Rate: 19200 Data bits: 8 Parity: Even Stop bits: 1 Slave ID: 1

14.5. Screw adapter onto HPI-Probe (Option)

With the adapter you have the possibility to use heated probe tubes from other manufacturers.

The adapter is available in 3/8-inch and 3/4-inch sizes.

When screwing the adapter onto the HPI probe, pay attention to the size of your probe tube.

- ► Screw the adapter onto the HPI probe.
- Screw your probe tube onto the adapter.

15 Appendix

	15.1. Error diagnosis regarding the measuring instrument							
Fault indication Gas cooler is faulty!	Possible causes Gas cooler faulty.	Repair Contact MRU service depart-						
The system will shut down.	,	ment.						
Undervoltage!!! The System will shut down	Battery is discharged.	Connect instrument to power grid.						
Power consumption too high Please check heated hose!	Please check heated sample line.	Heated sample line may be dam- aged. Disconnect the instrument from power grid and visually in- spect the sample line. Take care to unroll the heated sample line before operating it.						
Please wait – pump is off Warm up has not been completed yet.	Measurement not started as instrument is in warm-up phase.	Wait until warm up phase has terminated.						
Flow monitoring! Flow rate too low! Please check filter.	The sample gas flow has fallen below the required limit. Filter or sample line may be clogged. Gas pump may be faulty Flow sensor may be defect.	Check sample line and all filters on dust or water. Replace filters.						
Gas cooler is drying out.	Typically occurs when dry test gas or dry am- bient air is measured over a longer period of time (several minutes) instead of flue gas. Can only occur during operation without acid injection.	Use a test gas humidifier. Use acid injection.						

15.1. Error diagnosis regarding the measuring instrument

15.2. Condensate alarm

A condensate alarm occurs as soon as water is detected in the gas duct.In this case, the measurement can be implausible.

A condensate alarm that has occurred can be eliminated in a two-step process.

After a condensate alarm occurs, the analyser attempts to remedy the problem independently by means of a "condensate self-help" and to switch back to measuring mode

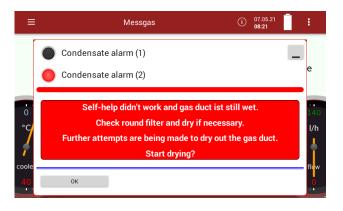
If the "condensate self-help" was not successful and there is still waterin the gas duct, you must start a drying of the gas duct manually.

Condensate self help

With "condensate self-help" you do not have to actively initiate any steps. The measuring analyser carries out the "condensate self-help" in-dependently.

As soon as water is detected in the gas duct, the analyser displays amessage.

- ⇒ The "Condensate self-help" is performed.
- As soon as the "Condensate self-help" has been successfullycompleted, a message appears.


⇒ A zero point measurement is started automatically.

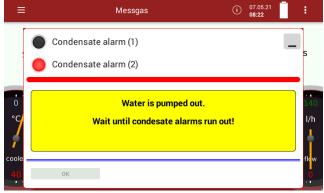
You can display the start and end of the "Condensate self-test

Start drying manually

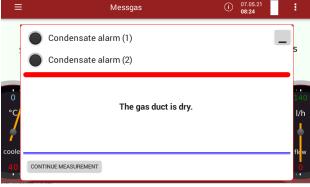
If the "condensate self-help" was not successful and there is still waterin the gas duct, you must start a drying of the gas duct manually. A corresponding message is displayed and an acoustic signal sounds.

Acid from the condensate

A CAUTION


Acid burns may result from weakly acidic liquids from the condensate.

- If you come into contact with acid, wash the area immediately using a lot of water.
- ▶ Note the safety data sheet for phosphoric acid (10%).



Dispose of acidic condensate and phosphoric acid in accordance with national and, if necessary, local disposal guidelines.

- ► Remove the round filter.
- ▶ Dry the round filter, if necessary.
- Press OK.
 - ⇒ A window appears

- ▶ If necessary, repeat the procedure if another message is displayed.
 - ⇒ A message appears, as soon as gas duct is dry again

- ▶ Press CONTINUE MEASUREMENT.
 - ⇒ A zero point measurement is started automatically.

15.3. Switching off the analyser in case error

If the touch screen does not respond, you have two options for switching off the analyser:

- ▶ Press the ७ button during flashing LED for 30 sec. minimum
- After change to continuous lighting, release the ψ button
- \Rightarrow The instrument will be switching off with reset.

Alternatively, you can switch off the analyser as follows:

- ▶ Press the reset button on the right side of the analyser.
 - ☞ See also the illustration in 3.4 Connectors, Page. 14.

15.4. Connecting analyser with MRU4win

The analyser is a Modbus device.

- You can connect Modbus devices with MRU4win via a serial interface (RS 485).
 - The see also Chapter 14.4 RS485 Extern (Option), S.114.
- You can connect Modbus devices to MRU4win via a TCP/IP connection.
 - \Rightarrow The TCP/IP connection can be made by LAN or WLAN.

Connecting analyser with MRU4win via serial interface (RS 485).

- ► Connect the electrical connections of the RS485 interface as described in Chapter 14.4 RS485 Extern (Option), S.114.
- ► Connect the analyser to your PC via the RS485 interface.
- ► Open the menu Device settings.
 - See also chapter 5.4 Device settings, Page 27.
- ► Set "Modbus Slave ID" to 1.

Please note that the Modbus slave ID is a consecutive number. If the number 1 is already assigned, assign "Modbus Slave ID" 2 etc. to the analyser.

<	Settings	(i) 27.04.21 82 13:41 82
Combustion analysis	NDIR Fastmode	e
Negative gas readings		
Analyser start with	Source zero point (gas) λ a	as Brettschneider
new zero point 👻	fresh air inlet 🔻	no 👻
Heated hose temperature [°C]	Heated probe temperature [°C]	Ref. temperature
160 +	160+	
Interval auto-zero [h] Mo	dbus Slave ID Hold delay after pu	urge [s] Aux connector
	+ +	- RS485 -

► You can now create the analyser in MRU4win.

See also Chapter Creating analyser in MRU4win, Page 121.

Connecting analyser with MRU4win via TCP/IP connection

Before you can connect the analyser with MRU4win via a TCP/IP connection, you have to read out the IP address in the analyser.

- ▶ Press the analyser to the network.
 - \Rightarrow The connection can be made via LAN or WLAN.
 - See also Chapter 5.11 Connecting analyser with WIFI (WLAN), Page 43.
- Press the "Context menu" (19).

- \Rightarrow A selection list appears.
- ▶ Press "Display settings".
 - \Rightarrow An overview screen appears.
 - ⇒ In the top line, the IP address of the analyser is displayed.

In this example the LAN address is 192.168.44.38.

- Switch to the Settings menu.
- ► Set "Modbus Slave ID" to 1.

Please note that the Modbus slave ID is a consecutive number. If the number 1 is already assigned, assign "Modbus Slave ID" 2 etc. to the analyser.

<	Settings	(i) 27.04.21 32 1 13:41 32
Combustion analysis	NDIR Fastmode	
Negative gas readings		
Analyser start with	Source zero point (gas) λ as E	Brettschneider
new zero point 👻	fresh air inlet 💌 no	•
Heated hose temperature [°C]	Heated probe temperature [°C]	Ref. temperature
160+	160+	0 -
Interval auto-zero [h] Mod	lbus Slave ID Hold delay after purg	e [s] Aux connector
	- <u>1</u> + +	RS485 💌

- ► You can now create the analyser in MRU4win.
 - See also Chapter Creating analyser in MRU4win, Page 121.

Creating analyser in MRU4win

Modbus devices are not automatically identified in MRU4win. Before you can connect the analyser with MRU4win, you have to create a Modbus device.

▶ Open MRU4win.

Settings
Activate Modbus
Look for Bluetooth devices when starting
 Display confirmation when stopping measurement
✓ Show start animation
Edit PDF Templates
Remote Support

▶ Set under "General" a check mark at "Activate Modbus". ► Click "Create Modbus Device".

MRU4win		
⊁ Scan	+ Create Modbus Devic	e P
		 MRU4win Settings General Activate Modbus Look for Bluetooth devices when starting Display confirmation when stopping measurement Show start animation

- \Rightarrow A window appears.
- ▶ You can connect the analyser with MRU4win via a serial interface or via a TCP/IP connection.
- ► Select the desired connection type under " Serial/TCP". If you select the connection type "TCP", the input window changes.

🏶 Modbus S	Settings	-		×	🛱 Modbus S	ettings	_	>
Name				Ŷ	Name			
Slave ID	0				Slave ID	0		
Serial/TCP	Serial			¥	Serial/TCP	ТСР		
Com Port				Ý	IP			
Baud rate	9600			~	Port			
Data Bits	8			~				
Parity	Even			Ŷ				
StopBits	One			~				
		ОК	Ca	ancel			ОК	Cancel

- Choose "Name"
 - \Rightarrow A selection list appears.

×

- ► Choose "1113 Device".
- ► Set "Slave ID" to 1.

Note that the slave ID must match to the "Modbus Slave ID" of the analyser. For example, if the analyser has the "Modbus Slave ID" 2, the "Slave ID" in MRU4win must be set to 2.

If necessary, enter your IP address, if you want to set up a TCP/IP connection.

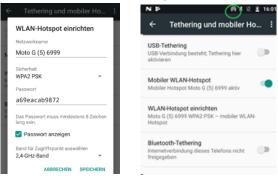
In this example the LAN address is 192.168.44.38.

See Example in Chapter Connecting analyser with MRU4win via TCP/IP connection, Page 120.

🏶 Modbus Settings — 🗆 🗙		
Name	1113 Device v	
Slave ID	1	
Serial/TCP	TCP v	
IP	192.168.44.38	
Port	8100	
	OK Cancel	

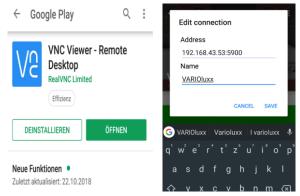
- ► Click "OK".
- ► Go to "Livemeasurements".

 \Rightarrow The analyser appears in the column of available analysers.


MRU	MRU4win	

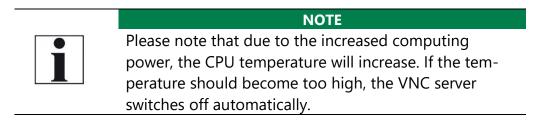
Scan Create Modbus Device		
1113 Device Modbus 192.168.44.38:8100	t able	
	02	
	%	
► Click on the "Connect-Icon" ⊂		

 \Rightarrow The analyser is connected.


15.5. Remote control of the analyser via VNC

Activate WLAN-Hotspot (android)

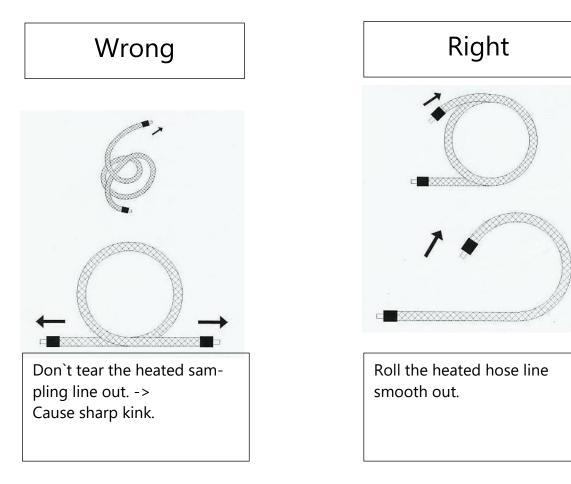
Install VNC viewer



Connect to device

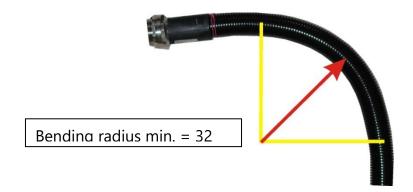
Activate VNC on Analyser

► Use remote control via Android device.


15.6. General Instructions for the heated hose line

For the save operation of the sample line it is important that it is installed correctly. This includes the following points:

- The bending radius as given below is maintained,
- The entire heated hose line is rolled out before put into operation,
- Both ends of the heated hose line are connected correctly,
- For thermal and mechanical reasons, it shall be supported by a cable duct along the line,
- The heated hose line shall be supported close to the analyser cabinet and probe housing, for example by using a separate stilt,
- There are no extreme temperature variations along the line, as the line's temperature is regulated depending on a sensor placed in the mid of the line.


Unrolling the heated hose line

A wrong and careless use of the heated hose line may cause damage. Especially on very long heated hose lines the right unpacking and rolling out is important.

Bending radius of heated sampling lines

The picture below shows the minimal bending radius.

ATTENTION

Falling below the bending radius will reduce life time of the sampling probe.

15.7.Spare parts

Part number	Spare part
56879A	PTFE Round filter
61158	Probe filter sintered metal 2 µm
61157	Probe filter sintered metal 20 µm
10825	Mineral wool filter element
59799	O-Ring 16 x 1,5
61066	O-Ring 12 x 2
61333	O-Ring 10 x 2
60074	O-Ring 8 x 2

16 Declaration of conformity

MRU Messgeräte für Rauchgase und Umweltschutz GmbH

Fuchshalde 8 + 12 74172 Neckarsulm-Obereisesheim Deutschland / *Germany* Tel.: +49 (0) 7132 - 99 62 0 Fax: +49 (0) 7132 - 99 62 20 E-Mail / *mail*: <u>info@mru.de</u> Internet / *site*: <u>www.mru.eu</u>

Bevollmächtigte Person, für die Zusammenstellung der technischen Unterlagen Person authorized to compile the technical documents

Name / name:	Dierk Ahrends	
Funktion / function:	QM-Beauftragter / QM- Representative	
Firmenname / company:	Messgeräte für Rauchgase und Umweltschutz GmbH	
Straße / street:	Fuchshalde 8 + 12	
Ort / city:	74172 Neckarsulm	
Land / country:	Deutschland / Germany	
I	Produkt/Product	
Bezeichnung / designation:	Gasanalysator	
	Gas analyser	
Produktname / name:	VARIO /uxx	

Gasanalyse / gas analysis

Hiermit erklären wir, dass das oben beschriebene Produkt allen einschlägigen Bestimmungen entspricht, es erfüllt die Anforderungen der nachfolgend genannten Richtlinien und Normen: *We declare the conformity of the product with the applicable regulations listed below:*

• EMV-Richtlinie / EMV-directive 2014/30/EU

Funktion / function:

- Niederspannungsrichtlinie / low voltage directive 2014/35/EU
- RoHS-Richtlinie / RoHS directive 2011/65/EU (RoHS II))

Neckarsulm, 24.05.2017

Ener hily

Erwin Hintz, Geschäftsführer / Managing Director

MRU · Messgeräte für Rauchgase und Umweltschutz GmbH

Fuchshalde 8 + 12 74172 Neckarsulm-Obereisesheim Fon 07132 99620 · Fax 07132 996220 info@mru.de · www.mru.eu